SAQ - Dr John Larkin - Joondalup Health Campus WA

SAO 6

An 84 year old man is brought to your emergency department following a high speed car accident. He has signs of multiple left rib fractures. Two hours after arriving in the emergency department he becomes more breathless and distressed.

His observations are:

- GCS 14
- HR 75 bpm
- BP 100/60
- RR 24

An arterial blood gas is performed

		Reference Range	
pH	7.14		(7.35-7.45)
pCO ₂	60	mmHg	(35-45)
pO_2	114		
HCO ₃	17	mmol/L	(21-28)
Lactate	1.4	mmol/L	(< 2.0)
FiO ₂	50	%	
Na ⁺	139	mmol/L	(135-145)
\mathbf{K}^{+}	4.8	mmol/L	(3.2-4.3)
Cl-	116	mmol/L	(99-109)
Glucose	11.3	mmol/L	(3.0-6.0)

a. Calculate the patient's A-a gradient and show the formula/s used in the calculation (3 Marks)

1 Mark for each of the two formulas and 1 mark for A-a gradient calculation

```
Formulas:

A-a gradient = pAO_2 - paO_2

PAO_2 = FiO_2 x (P_{atm} - P_{H2O}) - pCO_2 / 0.8 or PAO_2 = FiO_2 x (P_{atm} - P_{H2O}) - 1.25 x pCO_2

Calculation:

PAO_2 = 0.5 x (760 - 47) - 60 / 0.8 = 0.5 x 713 - 75 = 356.5 - 75 = 281.5

A-a gradient = 281.5 - 114 = 167.5 (Accept 160-175)
```

b. Calculate the patient's expected pCO₂ and show the formula/s used (2 Marks)

1 Mark for correct formula and 1 mark for correction calculation

Expected
$$pCO_2$$
 = Winter's formula = 1.5 x HCO_3 + 8 (+/-2)

Calculation =
$$1.5 \times 17 + 8 = (+/-2) = 16.5$$
 (Accept 14-19)

c. Calculate the patient's expected HCO_3 - increase assuming all changes are acute, show the formula/s used (2 Marks)

1 Mark for correct formula and 1 mark for correction calculation

Acute respiratory acidosis - Every 10mmHg increase in pCO $_2$ the HCO $_3$ - should increase by 1 mmol/L

pCO2 increase by 20 (+/- 5) expected HCO3 increase of 1.5-2.5

d. List 6 potential causes of the patient's ABG results (3 Marks)

1/2 Mark each for any 6 from:

- Causes of raised A-a gradient / respiratory acidosis
 - o *Rib* #
 - o Flail segment
 - o Pulmonary contusion
 - Haemothorax
 - Pneumothorax
 - o Tension pneumothorax
 - o Drugs
 - o Pre-existing lung disease e.g. CAL
- Causes of metabolic acidosis (normal anion gap, AG = 6)
 - o Fluid resuscitation note hyperchloraemia
 - o Others not likely given stem such as GI loss, drugs, endocrine, RTA

Question adapted from FACEM VAQ question 2011.1.8