SAQ 10

A 23 year old male with a decreased level of consciousness is being assessed in your ED. His arterial blood gas results with reference ranges are:

Reference Range

FIO ₂	0.3		
pH	6.9		(7.35-7.45)
pCO ₂	10	mmHg	(37-45)
pO ₂	147	mmHg	(80-95)
Bicarbonate	2	mmol/L	(22-28)
Base excess	-30		(-3 - +3)
O ₂ saturation	98	%	(> 95)
Lactate	7.1	mmol/L	(< 1.3)
Na ⁺	140	mmol/L	(134-146)
\mathbf{K}^{+}	6.0	mmol/L	(3.4-5.0)
Cl	105	mmol/L	(98-106)
Creatinine	0.1	mmol/L	(0.06–0.12)
Urea	4.8	mmol/L	(3.0-8.0)
Glucose	5.2	mmol/L	(3.5-5.5)
Osmolality	360	mOsm/L	(275–295)

a. List 4 key abnormalities on this patient's gas (4 Marks)

- Severe metabolic acidaemia
- Expected compensatory respiratory alkalosis / hypocarbia
- Severe lactic acidosis
- Mild hyperkalaemia or adjusted normal K⁺- Adjusted K 3.5 mmol/L for pH decrease of 0.5
- Raised osmolarity
- Raised A-a gradient pAO₂ is 201.4 giving A-a gradient of 54.4
- •

b. Calculate the patient's anion gap and write the formula used (2 Marks)

Formula: [Na⁺] - ([Cl⁻] + [HCO₃⁻]) Calculation: 140 - (105 + 2) = 33 or Formula: [Na⁺ + K⁺] - ([Cl⁻] + [HCO₃⁻]) Calculation: (140+6) - (105 + 2) = 39

c. Calculate the patient's osmolar gap and write the formulas used (3 Marks)

1 Mark for formula and 2 mark for correct calculation components

Osmolar gap = measured osmolarity - calculated osmolarity Calculated osmolarity = $2x [Na^+] + [Glucose] + [Urea]$ Calculation: 360 - ((2 x 140) + 5.2 + 4.8) = 70

d. List 6 causes for a raised osmolar gap (6 Marks)

- Toxic alcohol ingestion
- Ethanol ingestion
- Diabetic ketoacidosis
- Alcoholic ketoacidosis
- Mannitol
- Severe lactic acidosis
- Hyperproteinaemia
- Hyperlipidaemia
- Chronic renal failure
- Shock
- Trauma
- Burns
- Massive hyper-ionaemia Mg²⁺, Ca²⁺, PO₄⁻)