Candidate Number......

AGREED MARK.....

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 LOA: 1	Define drug elimination half life	Time required to change the amount of drug in the body by ½ during elimination	Concept required
HALF LIFE	Is there a formula you can use? Prompt: What factors affect half-life? Prompt: Can you explain what that means?	$T1/2 = 0.7 \times Vd/clearance (0.7 approx log 2)$	Both bold to pass
	How does knowledge of a drug's half life help us clinically?	Indicates time to steady state after dose change. 50% after 1, >90% after 4	
Question 2 LOA: 2 PENICILLINS	Describe the mechanism of action of penicillins	Inhibition of cell wall synthesis. Interfere with transpeptidation. Covalently binding to PBP. Important in the cross linkage. Bacteriocidal,. Only kills growing cells.	
	How does resistance to penicillins occur?	 a. Inactivation by beta lactamases b. Modification of target PBPs (Pneumo/entrococci) c. Impaired penetration of drug to PBP; impact on porin channels. Gram negatives d. Efflux pump (gram neg) 	At least 2 including beta-lactamases At least 3 bacteria
	In general, what is the anti-microbial spectrum of penicillin G? <i>Prompt: Could you be specific</i>	Streptococci, meningococci, enterococci, some pneumococci, treponema pallidum, clostridia, non-betalactamase producing staphylococci	
Question 3 LOA: 1 LITHIUM	Describe the pharmacokinetics of Lithium	Absorption; rapid and near complete. peak levels in 30-120min Distribution; total body water Vol.D 0.5 to 0.9L/kg Slow distribution Metabolism; none T ½; @20 hours. Elimination; renal excretion	
	What are some of the drug interactions with lithium	Thiazide diuretics- 25% reduction in lithium clearance Newer NSAID's – similar reductions in clearance Neuroleptics (except clozapine) and antipsychotics- enhancement of extrapyramidal syndromes	
	What are the some side effects of lithium Prompt: What other organ systems effects are there?	Neurological; tremor, confusion, ataxia, dysarthria, new psychiatric symptoms Reduced thyroid function Nephrogenic diabetes insipidis – loss of responsiveness to ADH. Oedema Skin reactions; acneiform eruptions	2 neurologic symptoms

Question 4 LOA: 1 ANTIEMETICS	Name some antiemetics used in the Emergency Department.	Ondansetron (or Granisetron or Tropisetron) Metoclopramide Prochlorperazine Diphenhydramine (or other antihistamines). Meclizine. Hyoscine. Benzodiazepines. Chlorpromazine. Droperidol	Bold to pass
	Compare the mechanisms of action of ondansetron and metoclopramide	Act at different receptors: Ondansetron: Peripheral 5HT3 blockade (vagal and spinal afferents, Reduces sensory visceral output) + Central 5HT3 blockade (vomiting centre and CTZ) Metoclopramide: D2 blockade (CTZ). Increases oesophageal motility. Increases LOS pressure. Increase gastric emptying	Bold to pass
	Describe the potential adverse effects of metoclopramide.	CNS: Restlessness, drowsiness, insomnia, anxiety, agitation – common (20%), esp. elderly Extrapyramidal effects: acute dystonia , akathisia, parkinsonian effects, more likely with higher doses Tardive dyskinesia with chronic dosing	Must mention acute dystonia + one other CNS effect
QUESTION 5 LOA: 1 DRUGS IN AGITATED PATIENTS	List the drug classes which are used in management of acute agitation in the ED Prompt: Can you give some specific examples?	Benzodiazepenes Antipsychotics – Phenothiazines eg chlorpromazine Butyrophenones eg haloperiodol Atypicals eg olanzapine , risperadone Barbiturates – phenobarbital	
	What is the predominant mechanism of action of the atypical antipsychotics.	Serotonin (5HT _{2A}) receptor antagonism Dopamine (D2) receptor antagonism (weaker effect)	
	Describe adverse effects of the atypical antipsychotics	Extrapyramidal reactions - – less common than with older typical antipsychotics Tardive dyskinesia Antimuscarinic effects – dry mouth, urinary retention etc Orthostatic hypotension Weight gain Hyperglycemia Hyperprolactinemia Agranulocytosis (clozapine) Neuroleptic malignant syndrome	

Candidate Number......

AGREED MARK.....

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	In the context of drug-receptor interactions,	High concentrations of full agonists can evoke a maximal	
LOA: 1 Partial agonist	what is the difference between a full agonist and a partial agonist?	response, but partial agonists cannot evoke maximal response at any concentration	
	Under what circumstances can a partial agonist act as a antagonist? <i>Prompt: Can you use opioids as an example?</i>	In the presence of a full agonist Buprenorphine	
Question 2 LOA: 1 TRIMETHOPRIM	Describe the mechanism of action of trimethoprim	Inhibition of DNA synthesis . Selective inhibition of bacterial dihydofolic acid reductase which is required from the step dihydrofolic acid to tetrahydrofolic acid. Much less efficient at inhibiting mammalian enzyme.	
	Can you explain why trimethoprim and sulphonamides when used together are synergistic?	Inhibition of sequential steps in same pathway. Sulphonamides inhibit dihydropteroate synthetase (PABA to DHFA), the step before that at which trimethoprim acts	
	How does resistance to trimethoprim occur?	Reduced cell permeability Increased production of enzyme DHF reductase Alteration in the enzyme with reduced binding of drug	Any 1 of 3
Question 3 LOA: 1 CARBAMAZEPINE	Outline the clinical uses of carbamazepine Describe the mechanism of its anticonvulsant activity	 Anticonvulsant; partial and generalised tonic-clonic seizures Treatment of bipolar mood disorder Trigeminal neuralgia Blocks sodium channels Inhibits high-frequency repetitive firing of neurons Presynaptic blocker of synaptic transmission (similar to phenytoin) 	Anticonvulsant + 1 other use
	Outline some of the side effects of carbamazepine <i>Prompt: What other organ systems can it effect?</i> Optional : Can you name some drug interactions involving carbamazepine	 Ataxia and diplopia, drowsiness (dose related CNS) GI upsets and hepatic dysfunction Erythematous skin rash Hyponatraemia and water intoxication Blood dyscrasias, including leukopenia common), and rarely aplastic anaemia and agranulocytosis. Enzyme induction (all anticonvulsants including itself). Valproic acid + phenytoin may inhibit carbamazepine 	CNS + one other

Question 4 LOA: 1 INSULIN	Describe the different types of insulin used in the routine management of Type I Diabetes. <i>Prompt: Please describe in terms of duration of</i> <i>action</i>	Rapid and short acting Clear soln, neutral pH, contain Zn rapid onset, short duration e.g. insulin neutral, insulin lispro, insulin glulusine	Pass criteria: Identify existence of rapid, intermediate and long-acting insulin
		- Intermediate acting Turbid soln, neutral pH, protamine in phosphate buffer (NPH) to prolong action e.g. insulin isophane, insulin aspart protamine	Aware that combination of therapies required to cover both basal requirements and post-prandial periods
	How are these properties used to achieve optimum glycaemic control?	Long acting Clear solution, soluble Slow onset, prolonged action Daily admin mimics basal insulin secretion e.g. insulin glargine, insuline detemir Tight glycaemic control is achieved by a combination of insulins with different durations of action with an aim of replacing the basal insulin requirements (50%) and meal requirements (50%). This is done with combinations of insulins with different duration of actions	
	What type of insulin is used for intravenous infusion and why?	Short-acting regular soluble insulin as it immediately dissociates on dilution and so is able to more precisely delivered.	
	Optional : Describe the principles of operation of a subcutaneous insulin infusion device. PROMPT: Insulin pump.	External open-loop pump for insulin delivery. Delivers individualised basal and bolus insulin replacement doses based on blood glucose monitoring. Programmed by user. Consists of insulin reservoir, program chip, keypad and display screen attached to subcutaneously inserted infusion set.	

Question 5	List the classes of drugs used in emergency	Benzodiazepenes	4 out of 5
LOA: 1	department procedural sedation	Dissociative anaesthetics (ketamine)	
DRUGS IN	Prompt: for classes	Intravenous anaesthetics (propofol)	
PROCEDURAL		Inhaled anaesthetics (N2O; volatile)	
SEDATION		Opiates (morphine, fentanyl)	
	Describe the elimination pharmacokinetics of	Hepatic metabolism producing inactive watersoluble	
	propofol	compounds, excreted renally	
	Prompt: Why do patients wake up quickly?	High plasma clearance exceeding hepatic clearance – thus	
		extrahepatic clearance exists – probably via lungs.	
		Termination of effect by redistribution from brain to	
		skeletal muscle (waking after single induction dose at 8-10	
		mins) "Three compartment model"	
		Short "half – life" making it suitable for infusions – rapid	
		offset.	
	Describe the organ effects of propofol	CNS: sedative/hypnotic – general depression of CNS	One from CNS, CVS + Respiratory
		activity, reduced cerebral blood flow and reduction in ICP.	
		Anti convulsant properties.Nil analgesic effect	
		Cardiovascular effects: hypotension secondary to arterial	
		and venous vasodilatation (reduced preload and afterload)	
		 – incr. effect with age and reduced intravascular volume. 	
		Some inhibition of baroreceptor reflex leading to small	
		increase in heart rate response only	
		Respiratory effects: respiratory depression incl apnoea.	
		Reduction in tidal volume and rate	
		Reduced response to hypercapnoea and hypoxia	
		Reduction in upper airway reflexes.	
		Other: Antiemetic	
		Effects related to organ system effects	
	Describe adverse effects of propofol	Hypotension	
		Apnoea, respiratory depression	
		• Loss of airway reflexes – obstruction and aspiration	
		Pain with injection	
		Allergy – cross reactivity with egg allergy	
		(emulsion)	
		Propofol infusion syndrome (metabolic acidosis &	
		tachycardia)	

AGREED MARK.....

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1:	What factors determine the difference in	Genetic – enzyme level differences	3 of 4 bold to pass
LOA: 1	drug metabolism between individuals?	Diet – induce / inhibit enzymes	
DIFFERENCES IN		Environmental – exposure to enzyme inducers	
DRUG		Age – extremes have decreased enzyme activity	
METABOLISM		or decreased levels of cofactors	
		Sex – increased metabolic rate in males	
		Drug-drug interactions – enzyme induction or	
		inhibition, substrate competition	
		Disease states - hepatic, pulmonary, cardiac,	
		thyroid, inflammatory	
		Liver size & function	
		Circadian rhythm	
		Body temperature	
	What is meant by "enzyme induction"?	Drug causes an increased rate of synthesis or	Bold to pass
	Prompt: What effect does it have on	decreased rate of degradation of enzyme causing:	
	metabolism?	accelerated substrate metabolism	
	Prompt: What effect does this have on	decreased pharmacological action of the inducer	
	the pharmacological action of the drug?	or a co-administered drug.	
Question 2	Describe the metabolism of	Rapidly absorbed, peak conc at 30-60 minutes	3 of 5
LOA: 1	paracetamol?	Slightly PP bound	
PARACETAMOL	Prompt: Does this change in toxic doses?	Partially metabolised by hepatic MEs to	
		paracetamol glucuronide and sulphate (inactive)	
		<5% excreted unchanged	
		Half-life is 2-3 hrs	
	What is the toxic dose and how does this	150-200mg/Kg or >7g in adult. Conjugation AAs	Reasonable approximation.
	cause toxicity?	(gluthathione in particular) used up, metabolised	Must have reasonable
		to toxic metabs NAPQI. Toxic to liver / kidneys.	understanding of how toxicity is caused
	What are the clinical manifestations of	GIT effects: Hepatic impairment. N/V, diarrhoea,	Hepatic + one other
	toxicity?	abdo pain, dizzy, disorientation	
		Renal failure	

Question 3 LOA: 1	What B-receptor types are there?	B1, B2 + B3	Need B1 + B2
SELECTIVE B2 AGONISTS	What cellular processes do B-agonist - B- receptor coupling initiate?	Activation of all 3 receptor types results in stimulation of adenylyl cyclase and increased conversion of ATP to cAMP. Mediated by stimulatory coupling protein (Gs) via GDP and GTP	Need adenylyl cyclase
	What are the clinical uses of B2 selective agonists?	Respiratory , uterine and vascular smooth muscle relaxation Skeletal muscle K+ uptake	Need respiratory bronchodilation + one other
Question 4 LOA: 1 WARFARIN	What is the mechanism of action of warfarin?	Warfarin inhibits reduction of inactive Vit K epoxide (KO) to active hydroquinone (KH ₂) form. Blocks γ-carboxylation of glutamate residues in prothrombin (Factor II) and factors VII, IX and X ,as well as endogenous anticoagulant protein C and S.	Need to know role of vitamin k
	Why is there a delay in the onset of action of warfarin?	8-12 hr delay due to partially inhibited synthesis and unaltered degradation of 4 vit k dependent clotting factors and depends on degradation ½ life in circulation eg factor VII- 6 hrs, IX 24-hrs, X - 40 hrs and II- 60 hrs)	Need to have some idea of delay in onset
	What pharmacological agents are used in the reversal of warfarin?	Vitamin K. FFP. Prothrombin Complex. Recombinant FVIIa	
	Optional : Describe the mechanisms of drug interactions with warfarin	Pharmacokinetic: Enzyme induction + inhibition. Altered protein binding Pharmacodymanic: Synergism. Competitive antagonism (Vitamin K)	3 required

Question 5 LOA: 1 DRUGS IN AF SOTALOL	List the classes of drugs used for the management of AF in the emergency department	B-blockers Ca-channel blockers Cardiac glycosides Class 1c antiarrhythmics Class 3 antiarrythmics	3 of 5
	Describe the pharmacodynamics of sotalol:	Non-selective beta blocker, Class II Prolongs plateau phase Class III	Need class II + III
	List the main side effects	Pro-arrthymic- Esp prolongation of QT and Torsades CCF Asthma, AV blockade	Prolonged QT + 1 other
	What drug interactions with Sotalol prolong the QT? <i>Prompt: What other interactions can</i> occur with sotalol?	Drugs which prolong QT- phenothiazines, Macrolides, eg erythromycin, quinolones antidepressants,- Increased risk of Torsades Drugs which cause hypokalaemia hypomagnesaemia increase risk of Torsades Myocardial depressant drugs- increased LVF Calcium channel blockers, class 1a antiarrythmics, may increase refractory time and contraction	2 examples