ACEM PRIMARY 2011/1 Pharmacology VIVA Morning Session 1

Candidate Number......

AGREEDMARK.....

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Variables of Drug Absorption	What variables influence the extent & rate which a drug is absorbed?	 Route of administration- PO; SC; SL; PR Nature of the absorbing surface (a) Cell membrane – single layer of intestinal epi cells compare to several layers of skin cells. (b) Surface area – lung, small intestine, stomach Blood Flow –blood flow enhances absorption SL v SC Drug Solubility – lipid soluble drugs - Drug Formulation – i.e. enteric coatings 	Need 3 of main concepts
	Explain why aspirin absorption is enhanced by the low pH in the stomach?	Aspirin is an acidic drug (pKa 2.98) relatively un-ionised in the stomach & more ionised in the small intestine (i.e. absorbed more readily from stomach)	Aspirin is more lipid soluble in stomach & absorption is greater here
	Prompt: How does ionisation of a drug affect it's solubility?	Drugs exist as weak acids or weak bases & in the body they are either ionised or un-ionised; Ionised (charged polar) water soluble; Un-ionised (non-polar) lipid soluble	Need to correctly state un-ionised drugs lipid soluble
Warfarin- pharmacokinetics and drug interactions	Describe the mechanisms for drug interactions with warfarin and give examples. <i>Prompts:</i>	 PK - enz inhibition (majority), Enz induction, altered plasma protein binding, altered abs (cholestyramine p 157) PD – bioavailability of Vit K, influencing Vit K dependant clotting factors, drugs affecting haemostasis (1 eg) 	Must get bold items
	Please describe a pharmacokinetic interaction with warfarin Please describe a pharmacodynamic interaction What drugs could increase the INR What drugs could decrease the INR	 ↑ INR: Amiodarone, aspirin, azitrhomycin, cephalosporins, cimetidine, erythromycin, phenytoin, quinidine, SSRI, valproate, metronidazole, hyperthyroid ↓ INR: AZT, barbs, carbamazepine, haloperidol, rifampicin, Vit K, St Johns Wort p159, hypothyroid, cabbage 	Must give at least 1 example of each

Anti-arrhythmics in AF	What anti arrhythmic drugs can be used in the management of atrial fibrillation	Beta-antagonists (class 2); calcium-antagonists (class 4); flecainide (class 1c); amiodarone (class 3); digoxin (unclassified); magnesium	Pass 3/5
	What are the mechanisms of action of amiodarone?	Blocks Na, K, Ca channels; blocks beta adrenoreceptors; prolongs AV conduction; decreases automaticity; decreases automaticity of purkinje fibres	Bold
	Prompt: what are the cellular mechanisms	Has actions on both rate and rhythm!	
	What are some important drug interactions with amiodarone?	warfarin (increased anticoagulant effect by inhibiting metabolism); digoxin (increases plasma concentration leading to toxicity); increased cardiac effects of other antiarrhythmic agents; phenytoin (increased plasma concentration)	At least 2
Thiopentone	Describe the distribution of thiopentone following an IV bolus	To highly vascular tissue and rapidly crosses BBB. High lipid solubility . Then rapidly redistributed to body fat.	Bold
	What are the potential adverse effects of thiopentone?	Advantages: Rapid, Controllable, Amnesic, Reduction of ICP , anticonvulsant	Bold
	Prompts: What are the CNS effects? What are the CVS effects	Disadvantages: Hypotension , Venous irritant, Myocardial depression, minimal muscle relaxation and analgesia, hepatic metabolism (vs inhalational agents)	
Drugs used in Tuberculosis	a) In treatment of a new case of Tuberculosis, what are the important principles of drug use?Prompt: How might the problem of drug resistance influence your therapy?	 Multiple drugs used initially (usually 4) ensures efficacy Prolonged course, usually 6 months Close supervision to ensure compliance and detect adverse effects 	Suggested pass criteria: Bold to pass
	b) Describe the pharmacology of Rifampicin	 Well absorbed orally Highly lipid soluble - widely distributed in tissues Metabolism in liver, excreted in faeces Induces P450 enzymes - many drug interactions Discolouration (orange) of body fluids Can be used prophylaxis 	2/6 bold to pass

ACEM PRIMARY 2011/1 Pharmacology VIVA Afternoon Session 2

Candidate Number......

AGREEDMARK.....

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Drug metabolism	Describe Phase 1 and Phase 2 reactions in drug metabolism.	Process of chemical modification of a drug leading to more hydrophilic, more polar, readily excreted compound.	Pass: Need basic understanding of in general "metabolise to more polar and excretable compounds"
	Prompt 1: What are some of the biochemical reactions that characterize phase 1 reactions? (Oxidation, reduction, hydrolysis)	Phase 1 (Functionalization) reactions: converts parent drug to more polar often inactive metabolite – process of oxidation, reduction, hydrolysis where polar functional group (OH, N H2,SH) is introduced- majority reaction via cytochrome P450 enzymes.	Phase 1 1 example: (oxidation, reduction, hydrolysis) CYP450 Phase 2
	Prompt 2: How does phase 2 reactions enhance the excretion of a drug?	 Phase 2 (Conjugation) reactions: metabolites combine with endogenous glucuronic a, sulphate, acetylcoenzyme A or glutathione to form more polar metabolite- reactions catalysed by different transferase enzymes. Note: Phase 1&2 can occur alone, sequentially or simultaneously. Metabolites can be more active or toxic than the parent drugs. 	1 example: Conjugation to form more polar compound+ one example of the endogenous substances
Lignocaine	Describe the mechanism of action of lignocaine on the heart.	Blocks activated & inactivated Na channels; greater effect on ischaemic tissue; no vagal effects. Class 1 B antiarraythmic action.	Na channel block and Class 1B
	Describe the adverse effects of lignocaine	CNS: dizzy, anorexia, N&V, tinnitus, tremor, visual disturbance, paraesthesia, slurred speech seizure, resp depression CVS: bradycardia, CVS collapse, uncommon proarrhythmia; can get SA arrest, impaired conduction may worsen/ precipitate pre existing CCF; ↓BP from myocardial depression Allergy GI as above	CNS & Cardiac with at least x 3 example total

Anti-migraine medication	What drugs can be used in the treatment of an acute attack of migraine?	simple analgesia (eg paracetamol, aspirin, codeine); metoclopramide , prochlorperazine ; ergot alkaloids eg ergotamine (+/- caffeine added); chlorpromazine ; triptans eg sumatriptan (opoids can be used but not choice)	3 bold
	How do triptans work?	structural analogue of 5-HT; selective agonists at 5-HT1 receptors; cause vasoconstriction, particularly on cerebral arteries	2 bold
	Chlorpromazine can be used to treat acute migraine. What are the major side effects of chlorpromazine?	hypotension; sedation; anticholinergic (dry mouth, dry eyes, urinary retention, constipation); extrapyramidal (eg acute dystonia) ; pain with IM injections, risk of muscle necrosis	2 bold
Drugs used in Asthma	a) What are the effects of corticosteroids on airways in asthma treatment?	Increase in airway calibre by inhibition of airway inflammation, decrease in bronchial reactivity and local immune suppression	bold
	b) Describe the cellular mechanisms by which corticosteroids are believed to exert their effects acutely.	 Decreased activation of lymphoid cells/eosinophils Decreased cytokine production and action Decreased production vasodilator prostaglandins Decreased histamine release Decreased production of IgE and IgG 	2/5 to pass
Aciclovir	What are the indications for acyclovir in the ED?	HSV – encephalitis; VZV, patients with HIV	Bold
	To which class of antiviral drugs does acyclovir belong? Prompt: Describe the mechanism of action of acyclovir.	DNA polymerase inhibitors (Specificity for virus-infected cell (virus-specific thymidine synthase). Inhibition of viral DNA synthesis (irreversible binding to viral DNA polymerase)	Bold
	Describe the pharmacokinetics of acyclovir?	Short half life 2.5 hrs (5times daily dosing oral); low oral bioavailability; mostly excreted unchanged in urine ; CSF 50% of plasma; wide distribution	Bold

ACEM PRIMARY 2011/1 Pharmacology VIVA Morning Session 3

Candidate Number......

AGREEDMARK.....

TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Volume of Distribution	Define the "volume of distribution" of a drug.	Defined as the volume in which the amount of drug in the body would need to be uniformly distributed to produce the observed concentration in the blood. Vd = Total amount of drug in body/conc in plasma or blood	Pass: either definition or formula
	What factors affect volume of distribution? (prompt: consider drug/patient factors)	 Drug properties – lipid solubility; pKa; pH; protein binding; Patient factors – age; gender; disease state; body composition (fat distribution); blood flow 	Pass: 2 factors from each
	Give example of drugs with high and low Vd.	 High Vd: diazepam; β blockers; tricyclics; digoxin; morphine; clonidine; fluoxetine; chloroquine; cyclosporin Low Vd: warfarin; lithium; phenytoin; aspirin; frusemide; valproic acid; tolbutamide; cephalexin 	Pass: two from each group
Digoxin side effects and toxicity	What are the features of digoxin toxicity?	G-I: anorexia, nausea, vomiting diarrhoea CNS: visual disturbances, confusion, nightmares, agitation, drowsiness Cardiac: features of bradycardia (progressing AV block, slow AF) and increased automaticity (VEBS and bigeminy, SVT with AV block, VT/VF)	Needs to recognise GI/CNS/Cardiac, as well as examples of bradycardia and inc. automaticity to pass
	What factors might predispose patients towards digoxin toxicity? Prompt: are there any interactions?	 Electrolyte imbalance Hypokalaemia, hypercalcaemia, hypomagnesaemia Organ disease Renal impairment, hypothyroidism, Other drugs Amiodarone, calcium channel blockers, potassium depleting drugs 	Bold (with at least one example of each) to pass

	i	t i i i i i i i i i i i i i i i i i i i	ł
Antipsychotic side effects and their treatment	What are the major side effects of phenothiazine antipsychotics?	Anti-cholinergic: dry mouth, dry eyes, urinary retention, constipation; Sedation; Weight gain; Extra-pyramidal: dystonia, Parkinson-like effects, akathisia, tardive dyskinesia; Hypotension; Neuroleptic malignant syndrome	Bold with 1 example of category
	What mechanisms of drug action are responsible for these side effects?	Anti-muscarinic; Alpha blockade; D2 antagonism; Serotonin receptor antagonism; Anti-histamine (H1)	At least 3
	Prompt: What receptors are involved?		
	How could the extra-pyramidal side effects be managed?	Lower dose; Switch to an atypical drug (lower incidence of extra-pyramidal effects); Administer benztropine or diazepam; No effective treatment for tardive dyskinesia:	Bold
l	Prompt: What about acute EP side effects?	prevention vital; monitor for early signs and reduce or cease anti-psychotic asap	Bold
	Prompt if time for additional marks: What about chronic EP side effects		
Adenosine	What are the principal effects of adenosine on cardiac conduction?	Inhibits AV nodal conduction	Bold
	Describe the pharmacokinetics of adenosine.	Rapidly metabolised . By red cells and endothelial cells Very short elimination half-life (seconds)	Bold
	What are the clinical implications of this pharmacokinetic profile?	Therefore must be given by rapid IV bolus. Side effects are short lived. No prolonged action to keep patient out of the arrhythmia. (Proximal IV site as preference).	Bold
	Name some indications and contraindications to its use.	Indication: supraventricular tachycardia; diagnostic Contraindications: AV block, sick sinus, acute asthma, lack of consent	SVT and 1 CI.
Drugs used in hypertensive	List some drugs used in hypertensive emergencies.	GTN, nifedipine, diazoxide, hydrallazine, nitroprusside, esmolol, labetalol	At least 3 drugs
emergencies	Tell us about the pharmacokinetics of Na nitroprusside .	IV administration, onset minutes , peak effect minutes, 1/2 life 2 minutes (thiocyanate 3 days), duration of action 1- 10 minutes, elimination-RBC's to cyanide , liver to thiocyanate , renally excreted	2/4 Bold
	What are the potential toxicities of Na nitroprusside?	Cyanide toxicity - hypotension, metabolic acidosis, pink skin, tachypnoea decreased reflexes, dilated pupils, coma Thiocyanate toxicity - ataxia, blurred vision, headache, nausea, vomiting, tinnitus, SOB, delirium, unconsciousness	Both bolded categories and 1 example of each.