TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES & MARKS
Question 1	1.1 Describe the normal sequence of electrical excitation of the cardiac conduction system and cardiac muscle?	Normal sequence of depolarisation: SA node Atria (pathways) AV node Bundle of His Major bundles (Right & Left) Purkinje fibres Ventricular muscle Left side of IV septum first Spread down septum to apex Then up to AV grooves Spread from endocardial to epicardial surfaces	All of bold to pass
	1.2 What are the common mechanisms which cause abnormalities of cardiac conduction?	Abnormal pacemakers Re-entry circuits Conduction defects Prolonged repolarisation Accessory pathways	2/3 bold to pass
	1.3 What are the possible clinical consequences of these conduction abnormalities?(Flexibility between 1.2 & 1.3)	Abnormal pacemakers • ectopic beats • pacemaker failure (sinus arrest) • fibrillation (atrial or ventricular) Re-entry circuits • leading to tachyarrhythmias Conduction delays • heart block • bundle branch blocks Prolonged repolarisation • Long QTc Accessory pathways • WPW or LGL	2 bold + 2 others to pass

TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES & MARKS
Question 2	2.1 Describe the normal distribution of	2.1 Influenced by gravity-3 main zones	Posture/Hydrostatic pressure and
Pulmonary blood flow	pulmonary blood flow.	Zone 1(apex) PA>Pa>Pv – least blood flow Zone 2(mid) Pa>PA>Pv	describe 3 zones to pass
		Zone 3(base) Pa >PA>Pv – Most blood flow	
	2.2 How is the distribution of pulmonary blood flow actively controlled?	2.2 Hypoxic pulmonary vasoconstriction-alveolar hypoxia constricts pulmonary arteries, directs blood away from poorly ventilated diseased lung areas. Mechanism-NO, endothelin-1, TXA2, low pH, autonomic system	Hypoxic pulmonary vasoconstriction to pass
	2.3 Please explain how cardiogenic pulmonary oedema occurs.	2.3 Starling's Law- differences in capillary and interstitial hydrostatic and colloid osmotic pressures. Significant increases in net outward pressure of Starling equation results in interstitial oedema especially at perivascular and peribronchial spaces. Further increases of outward pressure results in fluid entering alveolar spaces.	Basic description of Starling forces

Question 3:	3.1 What are the principal buffering systems in	Blood: Bicarbonate, Protein and Haemoglobin	3 buffering systems to pass
-	the body?	Interstitium: Bicarbonate	2 fluids to pass
	PROMPT: How about in other fluid	Intracellular: Protein, Phosphate	-
	compartments?	Urine: also uses ammonia	
	3.2 Outline how the body responds to a metabolic acid load.	a) Buffering in blood, interstitial and intracellular spaces	Buffering in blood CO_2 expiration via lungs
		b) Respiratory response: H ₂ CO ₃ converted to H ₂ O and CO ₂ , CO ₂ expired via lungs through increased minute ventilation.	Acid secretion in kidney + buffering in urine All 3 to pass
		c) Renal:	
		Renal mechanisms operate to compensate for	
		metabolic acidosis and return the serum pH towards normal	
		• Anions that replace HCO ₃ are filtered at the	
		glomerulus along with corresponding cations (mainly Na ⁺)	
		 Renal tubule cells secrete H⁺ into tubular fluid in exchange for Na⁺ and HCO₃⁻ 	
		• Buffering in the urine gives greater capacity to this system (otherwise limiting pH of 4.5 would stop further H ⁺ accretion)	
		Buffering systems include: Bicarbonate, Phosphate,	

TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES & MARKS
Question 4	4.1 What mechanisms does the body use to	a) Activated by cold:	4 to pass
Thermoregulation	regulate temperature?	Shivering, Hunger, Increased voluntary activity, adrenaline	
	PROMPT: What mechanisms are activated by	and noradrenaline secretion, decreased heat loss, cutaneous	
	cold?	vasoconstriction, curling up, horripilation	
	PROMPT: Are any voluntary?		
		b) Activated by heat:	4 to pass
		Increased heat loss, cutaneous vasodilation, sweating,	
		increased respiration, decreased metabolic heat production,	
		anorexia, apathy & inertia	
	4.2 How are these temperature regulating	Reflex responses activated by cold controlled from posterior	Bold to pass
	mechanisms controlled?	hypothalamus	
		Those activated by warmth are controlled primarily from the	
		anterior hypothalamus	

Question 5.1	Please outline the different ways in which a substance can cross a cell membrane	 Passive Diffusion Facilitated diffusion Active Endo/exocytosis Ion channels –ligand, voltage, mechanical gated Active transport Primary and secondary 	3/5 methods to pass
Question 5.2	Can you please explain the process of secondary active transport? PROMPT: Give a clinical example	The movement of an ion down its electrochemical gradient provides energy to transport another substance against its electrochemical gradient. Example – Na/glucose, Na/ aminoacids	Basic concept or clinical example to pass

TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES & MARKS
Question 1	1.1 How are cardiac stroke volume and cardiac output related?	CO = SV X HR	Need to know equation to pass
	1.2 What is cardiac preload?	Degree of stretch of cardiac muscle compared to resting length Equivalent to end diastolic volume	Definition to pass
	1.3 What factors affect preload?PROMPT - What are the causes of reduced end diastolic volume (preload)?	Blood volume Change in driving pressure (pericardial (tamponade), intrathoracic (tension pneumothorax, IPPV)) Venous return Sympathetic tone Muscle pump Loss of atrial contraction Venous compression (eg uterus in pregnancy) Reduced cardiac compliance Diastolic dysfunction / infiltrative diseases	2/3 bold to pass

TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES & MARKS
Question 2: Oxygen Dissociation Curve (west 77-80)	2.1 Please draw and describe the features of the haemoglobin-oxygen dissociation curve	NOLVED O_2 COMBINED WITH Hb O_2 COMBINED WITH Hb	To pass: Label the axes Draw an approximately correctly shaped curve Locate at least two points Standard points are 27 mmHg to SO ₂ 50%; 40 mmHg to SO ₂ 75%; 56 mmHg to SO ₂ 90%; 80 mmHg to SO ₂ 95% and 90 mmHg to SO ₂ 97%.
		 (a) May need prompt for SO₂ at various PO₂. (b) Describe importance of: Flat upper portion of curve- Hb uploading of O₂ unaffected unless PAO₂ falls significantly; Steep lower part of curve – large amounts of O₂ unloaded at peripheral tissues for only small drop in capillary PO₂. 	

2.2 What factors cause shift in the curve?	2.2 To Right: Increased Temperature, Increased PCO2, Increased H+ (decreased ph) and 2-3 DPG To Left: Reverse of above (and CO as below)	Temp, CO2, pH essential
2.3 What are the effects of carbon-monoxide on haemoglobin oxygen transport capacity	2.3 CO has 240 times the affinity of O2 for Hb, hence oxygen saturation greatly reduced and Hb oxygen carrying capacity reduced. CO also shifts O2 dissociation curve to left, interfering with unloading of O2	Reduced O2 carrying capacity for both with adequate explanation

TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES & MARKS
Question 3	3.1 Describe the factors influencing Angiotensin II production.	Is the effector protein in the renin-angiotensin system: integral to control of volume regulation	Intravascular volume Renin + 2 others
		 So, principally those that influence renin secretion: Increased secretion due to: Increased sympathetic activity Increased circulating catecholamines Prostaglandins (from Na⁺ depletion, diuretics, hypotension, haemorrhage, dehydration, cardiac failure, cirrhosis, upright posture, renal artery and aortic constriction) Decreased secretion due to: Increased Na⁺ and Cl⁻ re-absorption across macula densa Increased afferent arteriolar pressure Vasopressin 	
	3.2 What are the physiological effects of Angiotensin II?	 Arteriolar constriction Directly on adrenal cortex to increase aldosterone Facilitation release of norepinepherine release Contraction of mesangial cells causing decreased GFR Direct effect on renal tubules to increase Na+ re- absorption On the brain to decrease sensitivity of baroreceptor reflex On brain (circumventricular organs) to increase water intake and increase secretion vasopressin and ACTH 	Vasoconstriction + 2 others

TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES & MARKS
Insulin Deficiency	4.1 What are the effects of insulin deficiency?	Decreased Peripheral Utilisation (uptake) of glucose	3 bold essential
		Hyperglycaemia but low intracellular glucose	
	PROMPTS:	Derangement of the glucostatic function of the liver	
	What are the effects on the liver?	Hyperglycaemia with no decrease in gluconeogenesis	
		Secondary osmotic diuresis with dehydration	
	What are the effects on other tissues?	Electrolyte and calorie loss	
		Catabolism of protein & fat due to low intracellular glucose	
		Contributes to ketosis – acidosis	
		Breakdown of amino acids for energy	
		Increased Free fatty acids from breakdown of triglycerides	
		Secondary Acidosis, Coma, raised cholesterol	

Question 5	5.1 What are the different types of nerve fibres?PROMPT – What classifications are there?	 Diameter & speed of conduction Function Function Large, fast – proprioception, conscious touch, somatic motor Small, slow – pain , temperature, autonomic Gasser ABC (A – αβγδ) Numerrical 	One system or concept of system
	5.2 What is the clinical relevance to emergency medicine?	Ia, Ib, II,III IV Pain fibres are smaller and better penetrated by local anaesthetic leading to loss of pain before loss of touch or proprioception	One example

ACEM PRIMARY 2011/	PHYSIOLOGY VIVA	Day Friday	AM Session)
--------------------	-----------------	------------	-------------

TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES & MARKS
Question 1	1.1 What factors may reduce myocardial contractility?	Metabolic abnormalities•Hypoxia•Severe acidosis•HypercarbiaReduced sympathetic toneIncreased parasympathetic toneBlockade of circulating catecholaminesMyocardial disease (muscular dystrophies) or lossPharmacological depressants (antiarrhythmics, Ca channel blockers)Intrinsic depression in heart failure.HypothermiaAbnormal myofibrils (actin, myosin or troponin)Reduced levels of c AMP (reduced catecholamines or beta blockade)	3 of 5 of bold to pass
	1.2 How do changes in myocardial contractility alter the relationship between end diastolic volume and stroke volume?	Increasing contractility moves the curve upwards and to the left. Decreasing contractility moves the curve downwards and to the right. Circulating Digitalis, ot inotropic age in the parasympathetic and parasympathetic of myocardium of myocardium of myocardium depressar Loss of myocardium Uses of myocardium to solve the parasympathetic depression of myocardium to the parasympathetic depression of the parasymp	At least one of the two appropriate directions of movement of the curve to pass. Must get axes correct.

ACEM PRIMARY 201	1/1 PHYSIOLOGY VI	VA Day Friday	AM Session)
------------------	-------------------	---------------	-------------

TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES & MARKS
Question 2:	2.1 What sensors are involved in the control of	a) Central chemoreceptors in medulla-respond to CSF pH	Central and peripheral
	ventilation?	$(via CO_2)$	chemoreceptors and pulmonary
			receptors
Integrated responses to		b) Peripheral chemoreceptors in carotid and aortic bodies	
O2,CO2, pH		respond to O_2 , pH, CO_2 (minor)	
		c) Pumonary receptors:	
		• Stretch receptors in lungs, muscles, joints	
		• Irritant receptors in airways	
		• J receptors-engorged lung capillaries and alveolar	
		wan interstitial fluid	
		d) Nose and upper airway receptors - irritant receptor	
		e) Joint and muscle receptors - muscle spindles in the	
		intercostal muscles and diaphragm	
		f) Arterial baroreceptors - stimulation may cause reflex	
		hypoventilation	
		g) Pain and temperature receptors - may cause initial appoea	
	2.2 Describe the ventilatory response to	2.2 Low arterial nH stimulates perinheral chemoreceptors to	Peripheral chemorecentors dominate
	metabolic acidosis	increase ventilation Central chemoreceptors or respiratory	response
		centre itself may be stimulated in severe cases	r

Question 3				
TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES & MARKS	
Question 3	3.1 Describe how Na ⁺ is handled by the kidney.	 Glomerular filtration Actively transported out of the tubule in all sections EXCEPT descending thin limb of loop of Henle. 96-99% reabsorbed overall Reabsorption influenced by changes in GFR and in tubular reabsorption (MAINLY in the 3% reaching collecting ducts) – circulating aldosterone, other adrenocoticoids, circulating ANP and other natriuretic hormones and rate of tubular secretion H+ and K+. 	Filtration Active re-absorption Need to understand concepts	
	3.2 How does aldosterone influence renal sodium handling?	 Increased tubular reabsorption of Na+, with secretion of K+ and H+ Latent period of 10 – 30 minutes before effect (time delay due to need to alter protein synthesis via action on DNA) Act principally on the collecting ducts to increase number of active epithelial sodium channels 	Increased reabsorption	

Question 4	4.1 What is the difference between diffusion and	Diffusion =	Bold to pass
Osmosis/Tonicity	osmosis?	Net flux of solute particles down a concentration gradient -	
		from area of high to low concentration	
		(Time for equilibrium proportional to square of distance)	
		(Rate proportional to cross-sectional area & gradient	
		[Fick])	
		Osmosis =	
		Net flux of solvent across a membrane to an area of higher	
		concentration of solute to which membrane impermeable	
		(Osmotic pressure given by nRT/V – property of solution)	
	4.2 Define "Tonicity"	Osmolality of a solution relative to plasma $(0,00)$ (a_2) (a_2) (a_3) (a_4)	
		(0.9% saline is isotonic)	
	1.3 What is the genesis of the membrane	Differences in concentration gradient and electrical	
	4.5 what is the genesis of the memorane	gradient of major entions (Na, K), across the impermeable	
	potential?	cell membrane	
		Maintained by Na-K ATPase	
		3 Na out for each 2 K in so electrogenic	

TOPIC	QUESTION	ESSENTIAL KNOWLEDGE	NOTES & MARKS
Question 5	5.1 Please name the principal Ketone bodies.	Acetoacetate, β hydroxybutyrate, Acetone	2 out of 3 to pass
	5.2 How are the Ketone bodies produced and how are they metabolised?	Substrate – Fatty acids, AcetylCoA	Fatty acids AcetylCoA
		Site – mitochondria - Liver / Other tissues	
		Mechanism – β oxidation of fatty acids and entry of AcetylCoA into CAC High energy yield process.	
		AcetylCoA units condense to form AcetoacetylCoA.	
		Liver – AcetoacetylCoA \longrightarrow Acetoacetate \longrightarrow β hydroxybutyrate and acetone which is excreted in the urine and the breath	
		Tissues – SuccinylCoA → Acetoacetate → CO2 and H2O via CAC	
	5.3 In which clinical situations do they accumulate in the body?	Ketosis – metabolic acidosis (Diabetes, Starvation, high fat low carbohydrate diet)	Diabetes Starvation
	What are the physiological and clinical consequences of excess ketones?		(Bonus)