| TOPIC | QUESTIONS | KNOWLEDGE (essential in bold) | NOTES | |--|---|---|---| | Question 1 Glucose homeostasis (Ganong 24th ed pp 431-432, 433-434, 441-442, 444-445) Subject: Phys LOA: 1 | 1.1 What factors determine glucose homeostasis? | 1.1 Glucose absorption from intestine Glucose uptake in the periphery - muscle, brain, fat, red cells and liver Reabsorption in kidney Gluconeogenesis in liver (Insulin and Glucagon) | 1.1 Name at least 3 mechanisms | | | 1.2 What happens to glucose homeostasis in the absence of insulin? | 1.2 Hyperglycaemia due to a) decreased peripheral uptake of glucose into muscle and fat (direct effect) b) reduced glucose uptake by liver (indirect effect) c) increased glucose output by the liver and lack of glycogen synthesis (GIT, renal, brain and red cells glucose uptake unaffected) | 1.2
2 out of 3 mechanisms | | | 1.3 What effect does glucagon have on blood glucose? | 1.3 Increase BSL due to increased glycogenolysis and increased gluconeogenesis in liver | 1.3 know that glucagon increases liver glucose output | | Stem: We now move onto ph | narmacology. | | | | Question 2 Insulins (Katzung 12th ed pp 747-753) Subject: Pharm LOA: 1 | What pharmacological methods are used to optimise blood sugar control when administering insulin? Prompt: what are the different types of insulin? | Titration of dose to BSL Pharmacological manipulation of human insulin molecule: rapid-acting (aa reversal/substitution reducing aggregation properties), intermediate acting (insulin/protamine complexes), long acting (aa substitutions, molecular attachments) Mixing of insulin preparations Continuous subcutaneous insulin infusion devices | Bold to pass | | | What are the complications of | Hypoglycaemia | Bold + 1 to pass | |---------------------------|----------------------------------|--|-------------------------------------| | | insulin administration? | Hypoglycaemic unawareness | 2019 1 de to hass | | | | Insulin allergy (usually due to non-insulin | | | | | contaminants) | | | | | Immune insulin resistance | 1 | | | | Lipodystrophy at injection sites | | | Stem: We now move onto a | natomy. | | | | Question 3 | 1. identify the structures lying | 1.Medial to lateral: | 1. 4/5 bold to pass | | Model – foot (NS 9), | deep to the extensor | Tibialis anterior, EHL, Dorsalis Pedis, Deep fibular | 1. 4/3 bold to pass | | include description of | retinaculum | nerve, EDL, fibularis tertius, EDB | | | cutaneous nerve supply of | | , | | | foot. | 2. Describe the cutaneous nerve | 2. DORSUM: | 2 3/4 dorest 8 2/2 plantages | | Subject: Anat | supply of the foot | Deep Fibular nerve (1st web space), | 2. 3/4 dorsal & 2/3 plantar to pass | | LOA: 1 | | Superficial fibular nerve (becomes dorsal digital | pass | | ÷ | | nerves) – majority of dorsum of foot | | | | | Dorsal lateral cutaneous nerve of foot (terminal | | | | | branch of sural nerve) – lateral foot | | | | | Saphenous nerve (medial foot below medial | | | | | malleolus) | | | | | PLANTAR: | | | | | Medial, lateral plantar nerves (terminal branches | | | | | of tibial nerve) | | | | | Calcaneal branches (of tibia & sural nerves) | | | | | (ev mind a sarar nerves) | | | | 3. Describe the anatomy of the | 3. Direct continuation of anterior tibial artery | 3. 3 to pass | | | dorsalis pedis artery (dorsal | Lies between EHL & EDL & gives off | 5. 5 to pass | | | artery of the foot) | Medial tarsal artery, Lateral tarsal artery (lateral | | | | Extra question if time allows. | tarsal art. joins the arcuate artery) | | | | | At the 1 st interosseous space divides into the | | | | | 1 st dorsal metatarsal artery & deep plantar artery | | | | | (the deep pl. artery joins the lateral plantar artery | | | | | to form the deep plantar arch). | | | Stem: We now move onto pa | athology. | and Frances William | | | Question 4 | a) What are the principal | Vascular- | Bold + 3 of 7 clinical | | Complications of diabetes | complications of Diabetes | - macro atherosclerosis, CAD, PVD, RAS, HT and | | | mellitus (Robbins pp1138- | mellitus? | CVA | complications. | | 1143) | (Prompt: what happens in the | - microangopathic thickened BM, increased | | | - | pancreas?) | permeability of capillaries to plasma proteins - | | | Subject: Path | , | nephropathy, retinopathy, neuropathy | | | | <u> </u> | nepin opacity, reunopacity, neuropacity | | | | | Pancreatic changes - loss | s of islate calls (number | | |--------|------------------------------|---|---------------------------|---------------------------------| | LOA: 2 | | and size), amyloid infiltra | | | | | 1 | and size, and first many of | action of facts | | | | 1 | Renal - sclerosis, BM thic | kening, | | | | | glomerulosclerosis | <u>-</u> | Question b (to pass) - age | | | 1 | Occular- prolif and non p | orolif, haemorrhages, | group and severity of illness + | | | | exudates neovascularisa | tion, detachment, | at least 2 symptoms or | | | | glaucoma | | syndromes associated with | | | | Neuropathy | | each type. | | | | Type 1 | Type 2 | Age + 2 clinical + 1 pathology | | | b) Outline some of the | Onset: childhood, <18 | Onset: usually adult | to pass | | | differences in patients with | N or under weight | Obese | | | | Type 1 and type 2 diabetes. | Dec in insulin | Inc blood insulin | | | II. | | Circulating islet | No islet auto- | | | | | autoantibodies | antibodies | | | | | polyuria, polydipsia, | May have HONC | | | | | polyphagia +/- | | | | 1 | 1 | ketoacidosis | | | | | | Genetic linkage | No genetic linkage | | | | 1 | Dysfunction in T cell | Insulin resistance | | | | | resulting in islet Ab | | | | | | Type 1 :-
- typically young < 18 yrs | usually abrupt opent | | | | | due to exhaustion of b ce | | | | | | precipitating illness incre | | | | | | pancreas eg. infection- | asing acmanas on | | | 1 | | | | | | | | <u>Type 2 :-</u> | | 1 | | | | - often > 40 yrs, obese | | | | | | - often asymptomatic and | d incidental finding on | | | | | routine followup or blood | | | | | | - may have DKA or HONC | with dehydrating | | | | | precipitant | | | | | | - often a longer cause illn | ess due to residual | | | | | pancreas capacity | | 1 | | | | | | | | is 80/40 | T | T | r | |------------------|---|--|--------------------------------| | TOPIC | QUESTIONS | KNOWLEDGE (essential in bold) | NOTES | | Question 1 | What are baroreceptors and where are | Stretch receptors | Bold to pass | | Baroreceptors | they located? | | | | Subject: Phys | | Carotid, aortic, cardiopulmonary. In the adventitia | | | LOA: 1 | | of vessels. | Carotid and aortic plus one | | | | The carotid sinus and aortic arch receptors | other to pass | | | | monitor the arterial circulation. Receptors are in | | | | | the wall of the right and left atria, at the | | | | | entrance of SVC and IVC and in the pulmonary | | | | | veins as well as in the pulmonary circulation | | | | | (collectively the cardiopulmonary receptors). | | | | What is their mechanism of action? | | | | | | Very sensitive to changes in pulse pressure. | | | | | Exert an inhibitory input via the tractus solitarius | Need mention of inhibitory | | | | in the medulla. | nature of pathway and nerves | | | | Stimulated by distension of the structures in | affected (vagus, sympathetics) | | | | which they are located, therefore discharge at an | | | | | increased rate when the pressure in these | | | | | structures rises. | | | | | Increased baroreceptor discharge inhibits the | | |]!
 | | tonic discharge of sympathetic nerves and | | | | | excites the vagal innervation of the heart. | | | | | Result is vasodilatation, venodilation and a fall in | | | | | BP, bradycardia and decreased cardiac output. | | | | What is their action in this setting of | | | | | acute blood loss? | Decreased blood volume and decreased venous | Bold to pass | | | acute blood 1035. | return results in reduced stimulation of arterial | · | | | | baroreceptors and increased sympathetic output. | | | | | The result is reflex tachycardia and | | | | | vasoconstriction. | | | | | Vasocolisti ictioli. | | | Stem: The patien | t's INR result is 5.5. | 1 | | | Question 2 | What methods are available to reverse | Cease warfarin | 2/3 bold to pass, must include | | Vitamin K | warfarin induced anti-coagulation? | Vit K – oral or IV 1-10mg | vitamin K. | | Subject: Pharm | How does vitamin K reverse warfarin | +/- FFP or prothrombinex | | Stem: A 60 year old man with a history of atrial fibrillation on warfarin presents to ED following a motor bike accident. His blood pressure on arrival | LOA: 2 | effect? | Pharmacodynamic interaction with warfarin to reduce INR ie reverses the effect of warfarin Re-establishes normal activity of the clotting factors. Vit K dependant clotting factors: II, VII, IX,X | Bold to pass | |---|---|---|---| | | How long does it take for vitamin K to | | | | | work? | 6 - 24 Hours | >6 hrs | | Stem: He sustained | an open ankle injury. | | | | Question 3 Bones- ankle / foot Subject: Anat LOA: 1 | Identify the bones of the foot and ankle | Lat malleolus (fibula), Medial malleolus
(tibia), talus (dome/head/body),calcaneus,
cuboid, navicular, med/middle/lat
cuneiforms, MTs (base shaft/head/neck),
tarsal bones | 1.Bold to pass | | | 2. Identify factors that provide stability to the ankle joint (Prompt: Describe the ligament of the ankle in more detail.) | 2. Bony- Ankle mortice around talus (lat/med malleolus and distal tibial articular surface) held together by ant + posterior tibio-fibular ligament Ligamentous- MCL (Deltoid)- 4 parts ant + post tibio-talar, tibio-calcaneal, tibio-navicular) / LCL- 3 parts (ATFL, PTFL, calcaneo-fibular ligt) / distal tibio-fibular syndesmosis/ IOM Muscular- not seen | 2/3 bold to pass, some detail of one of the ligament. | | Stem: Several mont | hs after discharge, he develops osteomyelit | | T | | Question 4 Osteomyelitis Subject: Path LOA: 1 | 1.Describe pathogenesis of osteomyelitis. (Prompt what organisms cause osteomyelitis?) | *Local bone injury and organism entry, blood
borne organisms, neighbouring source entry.
*Staph Aureus > 80% of pyogenic ones
Others E coli, Kl Pneum, Ps Aerug from IVDU and
GU, haemophilus influenza, Gp B Streptococcus.
50% no orgs found. | 1.Bold + 1 to pass | | | 2.What changes occur to the bone? 3.What are the pathological sequelae of | *Acute inflammation, necrosis, abscess Sclerosis, involucrum and sequestrum, lytic focus and surrounding necrosis- periosteal elevation | 2.Bold to pass | | | osteomyelitis? | * Chronic up to 25%, resolve, deformity and bone destruction, severe sepsis, pathological fracture, endocarditis, SCC, sarcoma. | 3.Bold | | Stem: A 30 year old | woman who is 35 weeks gestation present | s with a severe headache and a BP of 160/100. We w | vill begin with physiology. | |---------------------|--|---|--| | TOPIC | QUESTIONS | KNOWLEDGE (essential in bold) | NOTES | | Question 1 | 1.1 What factors affect cerebral blood | 1.1 | 1.1 | | Autoregulation of | flow? | Intracranial pressure | Bold +1 | | cerebral | | Mean arterial pressure | | | circulation | | Mean venous pressure | | | Subject: Phys | | Local factors: pH, pCO2, cause constriction | | | LOA: 1 | | and dilatation of cerebral arterioles | | | | | Blood viscosity | | | | | 1.2 The process by which CBF is maintained at a | Able to draw a plateau region | | | 1.2 Describe autoregulation of cerebral | constant level despite variation in perfusion | with a range for MAP of 50 - | | | blood flow. You can draw a diagram if | pressure. | 150 mm Hg. | | | you wish. | Average CBF is 54 ml/100g/min between MAP | CHAPTER 23: Chrominin Through Special Regions 60 | | | | 65- 140 mmHg | 100 | | | | 1.3 Due to the fact that brain tissue and spinal | 1 50 | | | 1.3 What is the Monroe-Kellie doctrine? | fluid are essentially incompressible, the volume | | | | (optional if run out of time) | of blood, spinal fluid and brain tissue must be | Attend pressure (rum Hg) RE 33-9 Autoregulation of cerebral blood flow (CDF) | | | | relatively constant. So when ICP rises, the | a steady state conditions. The blue him shows the alteration and he sympathetic commission during assuring distance. | | | | cerebral vessels are compressed resulting in | | | | | reduced cerebral blood flow (CBF) | Nood to pass 3/2 part to pass | | | | | Need to pass 2/3 part to pass | | Stem: We are movi | ng onto pharmacology. Her treatment inclu | des Magnesium | | | Question 2 | 2.1 What are the indications of its use in | 2.1 It is indicated in pre-eclampsia and eclampsia. | Bold to pass | | Magnesium | pregnancy? | for the prevention and treatment of life | | | Subject: Pharm | | threatening seizures. | | | | 2.2 What are the other uses of | 2.2 It has an anti-convulsant effect, possible | 2/3 bold to pass | | LOA: 1 | magnesium in Emergency Medicine? | antiarrhythmic effect, bronchodilator effect. | | | | | (influence Na+ /K+ -ATPase, Na channels, certain | | | | | K and Ca channels). | | | | 2.3 What are the toxic effect of | 2.3 Hypermagnesaemia include nausea & | 3 to pass | | | magnesium? | vomiting, flushing, hypotension, muscle | | | | | weakness, muscle paralysis, blur or double vision, | | | | | CNS depression or loss of reflexes, respiratory | | | | | depression, renal failure, cardiac arrhythmia. | | | Stem: We are mov | | | | |---|--|---|--| | Question 3 Sagittal model of head looking at the CNS Subject: Anat LOA: 2 | 3.1 Identify the intracranial structures visible on this model. 3.2 Describe the anatomy of the Circle of Willis. You can draw a picture if you wish. | 3.1 Brain:- Cerebrum/ medulla/pons/cerebellum/spinal cord/corpus callosum/dura/ventricle Frontal/parietal/occipital/maxilla/ethmoid Spine-Atlas (C1)-ant and post arches/Axisdens(C2) | Bold 5/6 to pass 4/5 to pass the circle Middle Carotid Carotid Carotid Carebral Posterior Cerebral Posterior Communicating | | | ng onto pathology. | | | | Question 4 Pre-eclampsia Subject: Path LOA: 2 | 4.1 Describe the pathogenesis of pre - eclampsia. | 4.1 Endothelial dysfunction, vasoconstriction leads to hypertension, increase vascular permeability causing proteinuria & oedema. | Bold + 1 to pass | | | 4.2 What is the clinical course of pre eclampsia? | 4.2 > 34 weeks typically has HT, oedema, proteinuria Headache and visual disturbance Eclampsia is progression to seizures and coma | 2/3 bold to pass
(prompt: what happens in
untreated pre-eclampsia?) | | | 4.3 What morphological changes occur in the placenta? | 4.3 Infarcts, haematomas, villous ischaemia, syncytial knots, fibrinoid necrosis | 1 to pass |