TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1 Glucose homeostasis (Ganong 24th ed pp 431-432, 433-434, 441-442, 444-445) Subject: Phys LOA: 1	1.1 What factors determine glucose homeostasis?	1.1 Glucose absorption from intestine Glucose uptake in the periphery - muscle, brain, fat, red cells and liver Reabsorption in kidney Gluconeogenesis in liver (Insulin and Glucagon)	1.1 Name at least 3 mechanisms
	1.2 What happens to glucose homeostasis in the absence of insulin?	 1.2 Hyperglycaemia due to a) decreased peripheral uptake of glucose into muscle and fat (direct effect) b) reduced glucose uptake by liver (indirect effect) c) increased glucose output by the liver and lack of glycogen synthesis (GIT, renal, brain and red cells glucose uptake unaffected) 	1.2 2 out of 3 mechanisms
	1.3 What effect does glucagon have on blood glucose?	1.3 Increase BSL due to increased glycogenolysis and increased gluconeogenesis in liver	1.3 know that glucagon increases liver glucose output
Stem: We now move onto ph	narmacology.		
Question 2 Insulins (Katzung 12th ed pp 747-753) Subject: Pharm LOA: 1	What pharmacological methods are used to optimise blood sugar control when administering insulin? Prompt: what are the different types of insulin?	 Titration of dose to BSL Pharmacological manipulation of human insulin molecule: rapid-acting (aa reversal/substitution reducing aggregation properties), intermediate acting (insulin/protamine complexes), long acting (aa substitutions, molecular attachments) Mixing of insulin preparations Continuous subcutaneous insulin infusion devices 	Bold to pass

	What are the complications of	Hypoglycaemia	Bold + 1 to pass
	insulin administration?	Hypoglycaemic unawareness	2019 1 de to hass
		Insulin allergy (usually due to non-insulin	
		contaminants)	
		Immune insulin resistance	1
		Lipodystrophy at injection sites	
Stem: We now move onto a	natomy.		
Question 3	1. identify the structures lying	1.Medial to lateral:	1. 4/5 bold to pass
Model – foot (NS 9),	deep to the extensor	Tibialis anterior, EHL, Dorsalis Pedis, Deep fibular	1. 4/3 bold to pass
include description of	retinaculum	nerve, EDL, fibularis tertius, EDB	
cutaneous nerve supply of		, , , , , , , , , , , , , , , , , , , ,	
foot.	2. Describe the cutaneous nerve	2. DORSUM:	2 3/4 dorest 8 2/2 plantages
Subject: Anat	supply of the foot	Deep Fibular nerve (1st web space),	2. 3/4 dorsal & 2/3 plantar to pass
LOA: 1		Superficial fibular nerve (becomes dorsal digital	pass
÷		nerves) – majority of dorsum of foot	
		Dorsal lateral cutaneous nerve of foot (terminal	
		branch of sural nerve) – lateral foot	
		Saphenous nerve (medial foot below medial	
		malleolus)	
		PLANTAR:	
		Medial, lateral plantar nerves (terminal branches	
		of tibial nerve)	
		Calcaneal branches (of tibia & sural nerves)	
		(ev mind a sarar nerves)	
	3. Describe the anatomy of the	3. Direct continuation of anterior tibial artery	3. 3 to pass
	dorsalis pedis artery (dorsal	Lies between EHL & EDL & gives off	5. 5 to pass
	artery of the foot)	Medial tarsal artery, Lateral tarsal artery (lateral	
	Extra question if time allows.	tarsal art. joins the arcuate artery)	
		At the 1 st interosseous space divides into the	
		1 st dorsal metatarsal artery & deep plantar artery	
		(the deep pl. artery joins the lateral plantar artery	
		to form the deep plantar arch).	
Stem: We now move onto pa	athology.	and Frances William	
Question 4	a) What are the principal	Vascular-	Bold + 3 of 7 clinical
Complications of diabetes	complications of Diabetes	- macro atherosclerosis, CAD, PVD, RAS, HT and	
mellitus (Robbins pp1138-	mellitus?	CVA	complications.
1143)	(Prompt: what happens in the	- microangopathic thickened BM, increased	
-	pancreas?)	permeability of capillaries to plasma proteins -	
Subject: Path	,	nephropathy, retinopathy, neuropathy	
	<u> </u>	nepin opacity, reunopacity, neuropacity	

		Pancreatic changes - loss	s of islate calls (number	
LOA: 2		and size), amyloid infiltra		
	1	and size, and first many of	action of facts	
	1	Renal - sclerosis, BM thic	kening,	
		glomerulosclerosis	<u>-</u>	Question b (to pass) - age
	1	Occular- prolif and non p	orolif, haemorrhages,	group and severity of illness +
		exudates neovascularisa	tion, detachment,	at least 2 symptoms or
		glaucoma		syndromes associated with
		Neuropathy		each type.
		Type 1	Type 2	Age + 2 clinical + 1 pathology
	b) Outline some of the	Onset: childhood, <18	Onset: usually adult	to pass
	differences in patients with	N or under weight	Obese	
	Type 1 and type 2 diabetes.	Dec in insulin	Inc blood insulin	
II.		Circulating islet	No islet auto-	
		autoantibodies	antibodies	
		polyuria, polydipsia,	May have HONC	
		polyphagia +/-		
1	1	ketoacidosis		
		Genetic linkage	No genetic linkage	
	1	Dysfunction in T cell	Insulin resistance	
		resulting in islet Ab		
		Type 1 :- - typically young < 18 yrs	usually abrupt opent	
		due to exhaustion of b ce		
		precipitating illness incre		
		pancreas eg. infection-	asing acmanas on	
1				
		<u>Type 2 :-</u>		1
		- often > 40 yrs, obese		
		- often asymptomatic and	d incidental finding on	
		routine followup or blood		
		- may have DKA or HONC	with dehydrating	
		precipitant		
		- often a longer cause illn	ess due to residual	
		pancreas capacity		1

is 80/40	T	T	r
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	What are baroreceptors and where are	Stretch receptors	Bold to pass
Baroreceptors	they located?		
Subject: Phys		Carotid, aortic, cardiopulmonary. In the adventitia	
LOA: 1		of vessels.	Carotid and aortic plus one
		The carotid sinus and aortic arch receptors	other to pass
		monitor the arterial circulation. Receptors are in	
		the wall of the right and left atria, at the	
		entrance of SVC and IVC and in the pulmonary	
		veins as well as in the pulmonary circulation	
		(collectively the cardiopulmonary receptors).	
	What is their mechanism of action?		
		Very sensitive to changes in pulse pressure.	
		Exert an inhibitory input via the tractus solitarius	Need mention of inhibitory
		in the medulla.	nature of pathway and nerves
		Stimulated by distension of the structures in	affected (vagus, sympathetics)
		which they are located, therefore discharge at an	
		increased rate when the pressure in these	
		structures rises.	
		Increased baroreceptor discharge inhibits the	
]! 		tonic discharge of sympathetic nerves and	
		excites the vagal innervation of the heart.	
		Result is vasodilatation, venodilation and a fall in	
		BP, bradycardia and decreased cardiac output.	
	What is their action in this setting of		
	acute blood loss?	Decreased blood volume and decreased venous	Bold to pass
	acute blood 1035.	return results in reduced stimulation of arterial	·
		baroreceptors and increased sympathetic output.	
		The result is reflex tachycardia and	
		vasoconstriction.	
		Vasocolisti ictioli.	
Stem: The patien	t's INR result is 5.5.	1	
Question 2	What methods are available to reverse	Cease warfarin	2/3 bold to pass, must include
Vitamin K	warfarin induced anti-coagulation?	Vit K – oral or IV 1-10mg	vitamin K.
Subject: Pharm	How does vitamin K reverse warfarin	+/- FFP or prothrombinex	

Stem: A 60 year old man with a history of atrial fibrillation on warfarin presents to ED following a motor bike accident. His blood pressure on arrival

LOA: 2	effect?	Pharmacodynamic interaction with warfarin to reduce INR ie reverses the effect of warfarin Re-establishes normal activity of the clotting factors. Vit K dependant clotting factors: II, VII, IX,X	Bold to pass
	How long does it take for vitamin K to		
	work?	6 - 24 Hours	>6 hrs
Stem: He sustained	an open ankle injury.		
Question 3 Bones- ankle / foot Subject: Anat LOA: 1	Identify the bones of the foot and ankle	 Lat malleolus (fibula), Medial malleolus (tibia), talus (dome/head/body),calcaneus, cuboid, navicular, med/middle/lat cuneiforms, MTs (base shaft/head/neck), tarsal bones 	1.Bold to pass
	2. Identify factors that provide stability to the ankle joint (Prompt: Describe the ligament of the ankle in more detail.)	2. Bony- Ankle mortice around talus (lat/med malleolus and distal tibial articular surface) held together by ant + posterior tibio-fibular ligament Ligamentous- MCL (Deltoid)- 4 parts ant + post tibio-talar, tibio-calcaneal, tibio-navicular) / LCL- 3 parts (ATFL, PTFL, calcaneo-fibular ligt) / distal tibio-fibular syndesmosis/ IOM Muscular- not seen	2/3 bold to pass, some detail of one of the ligament.
Stem: Several mont	hs after discharge, he develops osteomyelit		T
Question 4 Osteomyelitis Subject: Path LOA: 1	1.Describe pathogenesis of osteomyelitis. (Prompt what organisms cause osteomyelitis?)	*Local bone injury and organism entry, blood borne organisms, neighbouring source entry. *Staph Aureus > 80% of pyogenic ones Others E coli, Kl Pneum, Ps Aerug from IVDU and GU, haemophilus influenza, Gp B Streptococcus. 50% no orgs found.	1.Bold + 1 to pass
	2.What changes occur to the bone? 3.What are the pathological sequelae of	*Acute inflammation, necrosis, abscess Sclerosis, involucrum and sequestrum, lytic focus and surrounding necrosis- periosteal elevation	2.Bold to pass
	osteomyelitis?	* Chronic up to 25%, resolve, deformity and bone destruction, severe sepsis, pathological fracture, endocarditis, SCC, sarcoma.	3.Bold

Stem: A 30 year old	woman who is 35 weeks gestation present	s with a severe headache and a BP of 160/100. We w	vill begin with physiology.
TOPIC	QUESTIONS	KNOWLEDGE (essential in bold)	NOTES
Question 1	1.1 What factors affect cerebral blood	1.1	1.1
Autoregulation of	flow?	Intracranial pressure	Bold +1
cerebral		Mean arterial pressure	
circulation		Mean venous pressure	
Subject: Phys		Local factors: pH, pCO2, cause constriction	
LOA: 1		and dilatation of cerebral arterioles	
		Blood viscosity	
		1.2 The process by which CBF is maintained at a	Able to draw a plateau region
	1.2 Describe autoregulation of cerebral	constant level despite variation in perfusion	with a range for MAP of 50 -
	blood flow. You can draw a diagram if	pressure.	150 mm Hg.
	you wish.	Average CBF is 54 ml/100g/min between MAP	CHAPTER 23: Chrominin Through Special Regions 60
		65- 140 mmHg	100
		1.3 Due to the fact that brain tissue and spinal	1 50
	1.3 What is the Monroe-Kellie doctrine?	fluid are essentially incompressible, the volume	
	(optional if run out of time)	of blood, spinal fluid and brain tissue must be	Attend pressure (rum Hg) RE 33-9 Autoregulation of cerebral blood flow (CDF)
		relatively constant. So when ICP rises, the	a steady state conditions. The blue him shows the alteration and he sympathetic commission during assuring distance.
		cerebral vessels are compressed resulting in	
		reduced cerebral blood flow (CBF)	Nood to pass 3/2 part to pass
			Need to pass 2/3 part to pass
Stem: We are movi	ng onto pharmacology. Her treatment inclu	des Magnesium	
Question 2	2.1 What are the indications of its use in	2.1 It is indicated in pre-eclampsia and eclampsia.	Bold to pass
Magnesium	pregnancy?	for the prevention and treatment of life	
Subject: Pharm		threatening seizures.	
	2.2 What are the other uses of	2.2 It has an anti-convulsant effect, possible	2/3 bold to pass
LOA: 1	magnesium in Emergency Medicine?	antiarrhythmic effect, bronchodilator effect.	
		(influence Na+ /K+ -ATPase, Na channels, certain	
		K and Ca channels).	
	2.3 What are the toxic effect of	2.3 Hypermagnesaemia include nausea &	3 to pass
	magnesium?	vomiting, flushing, hypotension, muscle	
		weakness, muscle paralysis, blur or double vision,	
		CNS depression or loss of reflexes, respiratory	
		depression, renal failure, cardiac arrhythmia.	

Stem: We are mov			
Question 3 Sagittal model of head looking at the CNS Subject: Anat LOA: 2	3.1 Identify the intracranial structures visible on this model. 3.2 Describe the anatomy of the Circle of Willis. You can draw a picture if you wish.	3.1 Brain:- Cerebrum/ medulla/pons/cerebellum/spinal cord/corpus callosum/dura/ventricle Frontal/parietal/occipital/maxilla/ethmoid Spine-Atlas (C1)-ant and post arches/Axisdens(C2)	Bold 5/6 to pass 4/5 to pass the circle Middle Carotid Carotid Carotid Carebral Posterior Cerebral Posterior Communicating
	ng onto pathology.		
Question 4 Pre-eclampsia Subject: Path LOA: 2	4.1 Describe the pathogenesis of pre - eclampsia.	4.1 Endothelial dysfunction, vasoconstriction leads to hypertension, increase vascular permeability causing proteinuria & oedema.	Bold + 1 to pass
	4.2 What is the clinical course of pre eclampsia?	4.2 > 34 weeks typically has HT, oedema, proteinuria Headache and visual disturbance Eclampsia is progression to seizures and coma	2/3 bold to pass (prompt: what happens in untreated pre-eclampsia?)
	4.3 What morphological changes occur in the placenta?	4.3 Infarcts, haematomas, villous ischaemia, syncytial knots, fibrinoid necrosis	1 to pass