exposure - may last for days. | | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |--|---|--|--| | TOPIC Question 2: Chronic inflammation | (a) What cell types are present in chronic inflammation? | Macrophages Lymphocytes Plasma cells Eosinophils Mast cells Neutrophils | Bold plus 2 others to pass | | | (b) What processes mediate the persistent accumulation of macrophages seen in chronic inflammation? | Continued recruitment of monocytes (continued expression of adhesion molecules and chemotactic factors) Local proliferation of macrophages Immobilisation of macrophages | Bold to pass | | | (c) What products are released by activated macrophages in chronic inflammation? | Products associated with tissue injury: • Toxic O ₂ metabolites; Proteases (elastases, collagenases); Neutrophil chemotactic factors; Coagulation factors; AA metabolites; Nitric oxide Products associated with fibrosis: • Growth factors (PDGF, FGF, TGF); Fibrogenic cytokines; Angiogenesis factors (FGF); "Remodelling" collagenases | Processes in bold and an example of each Simple list (of 5 or more passes. Better pass if organised into groups | ## Qn 3 ACEM PRIMARY 2009/2 PATHOLOGY VIVA Thursday 17 am | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |-------------|---|---|---| | Question 1: | What is a paraneoplastic syndrome? | A complex of symptoms that cannot be readily explained by the local or distant spread of a tumour or by elaboration of hormones from the tissue in which the tumour arose. | Generally accurate description required to pass | | Question 2: | What are the main types of paraneolastic syndromes? | Cushing - Small Cell Ca lung (ACTH) SIADH - Small Cell Ca lung, intracranial (ADH) Hypercalcemia - Squamous Cell Ca lung, breast (parathyroid like hormones, TNF, TGF, IL-1) Considered the small adaptates as a paragraph and the small adaptates as a paragraph. | Endocrinopathies with at least 2 examples and at least one other to pass. | | | | Carcinoid – bronchial adenoma, ca pancreas and stomach – serotonin/bradykinin) Polycythemia – Renal (EPO) Nerve and Muscle Syndromes Myasthenia (bronchogenic Ca - ? immune mechanism) CNS/neuro (breast) Dermatological Acanthosis Nigricans (gastric, lung, uterine) Dermatomyositis (bronchogenic. Breast) HPOA - bronchogenic | Prompt: What syndromes or abnormal laboratory findings may be related to these syndromes? What are the mechanisms of these syndromes? | | Question 3: | What is the cause of cachexia in cancer? | Not generally understood Anorexia Elevated BMR ? humoral factors – TNF, cytokines, Other tumour produced factors. | | | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |-------|--|---|---| | Qn 1 | What are streptococci? | Gram-positive cocci growing in pairs or chains. Facultative or obligate anaerobes. Cause variety of suppurative infections and immunologically mediated post-streptococcal syndromes. | Bold to pass | | Qn 2 | Name some of the different types of streptococci and give examples of diseases they cause. | Alpha haemolytic - S. pneumonia - pneumonia | 3 major type/group + 6 diseases to pass | | Qn 3 | What factors in streptococci contribute to their virulence? | Capsules pyogenes, pneumoniae M Protein prevents phagocytosis (anti M protein AL → Rh.F.) Complement C5a peptidase Pneumolysin lyses target cells (S pneumoniae) activates complement Pyrogenic exotoxin- rash and fever High MW glucans plaque formation aggregation of platelets Sucrose → lactic acid (S. mutans). | Any 3 to pass Capsule important. | | | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |-----|--|--|---------------------------------------| | DIC | What major clinical disorders are associated with DIC? (same words as table) | Most common are obstetric complications, malignancy, sepsis and major trauma Obstetric: abruptio, retained dead fetus, amniotic fluid embolism, septic abortion. Infections: G-ve sepsis, meningococcus, malaria, rickettsia, histoplasmosis, aspergillosis Neoplasia: pancreas, prostate, lung, stomach. Massive tissue injury: trauma, burns, surgery. Miscellaneous: snakebite, shock, heat stroke, vasculitis, liver disease, leukaemia. | 3 of 5 groups and an example of each. | | | What is the pathogenesis of DIC? | 2 major mechanisms - release of tissue factor or thromboplastic substances into the circulation, shift towards pro-coagulation, extrinsic pathway - widespread injury to epithelial cells, causing release of tissue factor, platelet aggregation, intrinsic coag pathway | Both
mechanism
to pass | | | What are the consequences of DIC? | widespread deposition of fibrin leads to ischaemia and haemolytic anaemia hemorrhagic diathesis (consumptive coagulopathy) from consumption platelets/clotting factors & activation plasminogen | | | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |------------------|--|--|--| | TOPIC Question 1 | Describe the process of skin wound healing by first intention. Prompt: Describe the timeline of these steps. Wound contraction Granulation tissue Only 100 Days FIGURE 3-20 Phases of wound healing. (Modified from Clark RAF: Wound repair, In Clark RAF (ed): The molecular and cellular biology of wound repair, 2nd ed, New York, Plenum Press, 1996, p. 3.) | 24 hours: Scab; Neutrophils; Clot 3 to 7 days: Mitoses; Granulation tissue; Macrophage; Fibroblast; New capillary Weeks: Fibrous union 24 hours: neutrophils at the margins of the incision, 24 to 48 hours: epithelial cells move from the wound edges and fuse in the midline beneath the surface scab, producing a continuous but thin epithelial layer that closes the wound. By day 3, neutrophils replaced by macrophages. Granulation tissue progressively invades the incision space. Collagen fibres in the margins of incision. Epithelial cell proliferation thickens the epidermal layer. By day 5, the incisional filled with granulation tissue. Neovascularization is maximal. Collagen bridges the incision. The epidermis recovers its normal thickness. | NOTES Timeline + Clot Inflammation (neutrophils + macrophages) Granulation Remodelling | | | p. 3.) | | | ## Qn 2 ACEM PRIMARY 2009/2 PATHOLOGY VIVA Thursday pm | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |--------------------------------------|--|---|-------------------------------| | Question 2:
Normal
Haemostasis | a) In the normal coagulation cascade, what happens after factor X is activated? Prompt: tell candidate factor X is where the intrinsic and extrinsic pathways join. | Conversion of Prothrombin (II) to Thrombin (IIa) requiring Calcium (Ca) and activated factor V (Va) as cofactors. Occurs on surface of damaged endothelium or activated platelets IIa catalyses fibrinogen (I) to fibrin (Ia) in presence of Ca IIa catalyses factor XIII to XIIIa in presence of Ca leading to cross-linking of fibrin | Bold essential to pass | | | b) Describe the process of normal fibrinolysis. | Plasmin is produced from circulating plasma protein plasminogen, either by factor XIIa – dependent pathway, or by plasminogen activators. (PA, see 2. below) | Bold essential | | | | Plasmin breaks down fibrin to FSPs, (eg D-dimer) and disrupts polymerisation | | | | | 3. a) t-PA from endothelial cells most important PA, and most active when attached to fibrin b) Urokinase – like TPA (u-TPA) circulating protein | | | | | 4. Free plasmin inactivated by alpha 2 plasmin inhibitor | | #### Qn 3 ACEM PRIMARY 2009/2 PATHOLOGY VIVA Thursday PM Candidate Number...... AGREED MARK..... | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |---------------------------------------|--|--|--| | Question 1: Diabetes Mellitus Type 1 | What is the pathogenesis of diabetic ketoacidosis? | Insulin deficiency and glucagon excess → decreases peripheral utilization of glucose while increasing gluconeogenesis → severe hyperglycaemia Hyperglycaemia causes osmotic diuresis and dehydration Insulin deficiency increases lipolysis and FFAs production. FFAs are converted to ketone bodies by the liver. If rate of ketone bodies production exceeds rate of utilization by peripheral tissues→ketonaemia and ketonuria. Decreased urinary excretion of ketones leads to systemic metabolic ketoacidosis | 1 from each of these groups to pass | | Question 2: | What are the long-term complications of diabetes? | Macrovascular- coronary, peripheral vascular, cerebral and other large artery atherosclerosis, hypertension Microangiopathy- nephropathy, cerebral microangiopathy, peripheral neuropathy, autonomic neuropathy Diabetic ocular complicationsretinopathy, cataracts, glaucoma | Macrovascular and microvascular with 2 examples of each to pass or Simple list of 6 to pass Higher score for organization in groups | | Question 3: | Describe the stages in the development of Type 1 Diabetes? | Genetic predisposition Precipitating event Autoimmune destruction of islet cells Subclinical leading to overt DM | Optional part of qn. | ## Qn 4 ACEM PRIMARY 2009/2 PATHOLOGY VIVA Thursday PM | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |-----------------------------|---|--|---| | Question 4: Ischemic bowel | 1. What are the predisposing conditions for the development of ischemic bowel? Non-occlusive ischaemia | Arterial thrombosis | Simple list of 6 or more must contain examples of each of first 3 categories = straight pass headings + good examples of each = better pass. | | | 2. What are the clinical features of transmural infarction? | Pain Tenderness Nausea Vomiting Bloody diarrhoea, melanotic stool Shock Vascular collapse Absent bowel sounds Abdominal rigidity | Pain + any other 3 to pass | ## Qn 5 ACEM PRIMARY 2009/2 PATHOLOGY VIVA Thursday PM | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |------------|---|---|-------------------| | Question 5 | What disorders can precipitate the Adult Respiratory Distress | Infection: sepsis*, diffuse pulmonary infections*, gastric aspiration* Trauma: lung injury, head injury*, burns, radiation | 4 groups, 1 | | ARDS | Syndrome, ARDS? | Inhalation: oxygen, smoke, irritants | example from each | | AIGDS | Syndrome, AROS: | Chemical injury: heroin, salicylate, barbiturate, paraquat | 110111 Cacil | | P715 | Prompt: What clinical conditions are | Haematology: transfusions, DIC | Need to | | | associated with development of | Other: pancreatitis, uremia, CP bypass, hypersensitivity reactions | include | | | ARDS? | (50% of ARDS cases associated with *) | infection | | | (same words as table) | ((() () () () () () () () () | | | | | | | | | | | 3 out of 4 | | | What is the pathogenesis of ARDS? | Diffuse alveolar capillary damage, variety of insults, initiated by different mechanisms. Capillary injury causes inc. vascular permeability, alveolar flooding & oedema, fibrin exudation, formation of hyaline membranes, loss of diffusion capacity, abnormalities of surfactant. Consequence of uncontrolled activation of acute inflammatory response; | bold to pass | | | | most injury by neutrophils. | | | | | Macrophages alternative source of injury | | | | What are the outcomes of ARDS? | Death, survival with organisation and scarring. | optional | ## Qn 1 ACEM PRIMARY 2009/2 PATHOLOGY VIVA FRIDAY 18 - AM Candidate Number...... AGREED MARK....... | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |--|---|---|--------------------| | Question 1: | What are the morphological and chemical changes associated with early | Decreased generation of ATP Loss of cell membrane integrity | | | Reversible Cell Injury | cell injury. | 3. Defects in protein synthesis4. Cytoskeletal damage5. DNA damage | 3 out of 5 to pass | | Question 2: | What are the phenomena that | The first is the inability to reverse mitochondrial | | | | characterize irreversible cell injury | dysfunction (lack of oxidative phosphorylation and ATP generation) even after resolution of the original injury. | Bold to pass | | | | The second is the development of profound disturbances in membrane function. | | | Question 3: | Can you give an example of a protein | 1. Cardiac muscle – contains a specific isoform of | | | ************************************** | that leaks across degraded cell membranes? | the enzyme creatine kinase and of the contractile protein troponin. 2. Liver (and specifically bile duct epithelium) – | 1 example to pass | | | Prompt – "specific organs" | contains a temperature-resistent isoform of the enzyme alkaline phosphatase. | | | | | 3. Hepatocytes – contain transaminases. | | # Qn 2 ACEM PRIMARY 2009/2 PATHOLOGY VIVA Friday am | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |------------------------------|--|---|-------------| | Question 2:
Host Defences | (a) What are the normal barriers to infection by ingested pathogens in the gastrointestinal tract? | Acid gastric secretions; viscous mucosal layer; lytic pancreatic enzymes; bile detergents; secreted IgA antibodies; competition for nutrients with commensal bacteria; clearance by defaecation | 3/7 to pass | | | (b) Describe the barriers to infection that exist within the respiratory tract. | Mucociliary blanket within upper airways for trapping large microbes Coughing (clears microbes from trachea) Ciliary action within trachea and large airways (moves them up to be swallowed) Alveolar macrophages or neutrophils attack and destroy microbes | 2/4 to pass | | | (c) What processes can disrupt the normal protective mucociliary action? | Smoking; cystic fibrosis (viscous secretions); aspiration of stomach contents; trauma of intubation; viral infection; bacterial infection | 3/6 to pass | | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |----------------------|---|--|---| | Question 1: Embolism | What conditions predispose to the development of pulmonary thromboembolism? | Hypercoagulable States: 1. Primary- factor V Leiden, prohtrombin 20210 A, hyperhomocysteinaemia, antiphospholipid syndrome 2. Secondary – obesity, recent surgery, cancer, oral contraceptive pill, pregnancy Other underlying medical conditions – hip fracture, immobilization, cardiac disease, central venous lines | Simple list of 6 = straight pass Better pass with bold groups and examples of each | | Question 2 | What are the potential clinical sequelae of pulmonary thrombo-embolism? | Relates to size and number of emboli and overall status of cardiovascular system 1. Asymptomatic 2. Sudden death 3. Large PE —chest pain, dyspnoea, shock 4. Small PE-transient chest pain, cough and in predisposed individuals pulmonary infarct causing tachycardia, tachypnea, haemoptysis, fever, pleural rub. 5. Pulmonary hypertension | Any 3 to pass | | Question 3: | What are the non-thrombotic types of pulmonary embolism? | Air Bone marrow or Fat Amniotic fluid Tumour Foreign bodies | 3 to pass | ## Qn 4 ACEM PRIMARY 2009/1 PHYSIOLOGY VIVA Friday AM | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |-------------|--|--|---| | Question 4: | a. What are the causes of acute pancreatitis? | Metabolic Includes alcohol Mechanical gallstones trauma Vascular Infectious Idiopathic (probably genetic basis) | Identify alcohol and gallstones plus two others to pass. | | | b. Describe the pathogenesis of acute pancreatitis | Arises as a result of autodigestion by inappropriately activated pancreatic enzymes. Trypsinogen is activated to trypsin. This in turn activates prophospholipase and proelastase, prekallikrein thus activating kinin system, and Hageman factor thus activated clotting and complement systems. Three potential pathways for initiation of pancreatic pathways: a. pancreatic duct obstruction b. primary acinar cell injury c. defective intracellular transport of proenzymes within acinar cells | Autodigestion and key role of activation of trypsinogen as triggering factor to pass. | #### Qn 5 ACEM PRIMARY 2009/2 PATHOLOGY VIVA Friday AM) | TOPIC | QUESTION | ESSENTIAL KNOWLEDGE | NOTES | |--|--|--|----------------------| | Friday 18 th Morning Question 5: MS p1383 | What are clinical features of Multiple Sclerosis | Distinct episodes of neurological deficits separated by time. Myriad of presentations as lesions separated by space. Unilateral visual impairment (optic neuritis) is common, brainstem, cord lesions | Bold to pass | | | What is the pathogenesis of Multiple Sclerosis? | Exact etiology not established Autoimmune, demyelinating disorder, to white matter lesions separated in space. Genetic linkage, ?microbial / viral triggers. CD4+ Th1 T cells react against myelin antigens, release cytokines, activate macrophages. Inflammatory cells create plaques. | Need bold
to pass | | | What might be found in CSF of a patient with MS? | Mildly elevated protein ; moderate pleocytosis; increased proportion of gamma globulin, oligoclonal bands – reflects B cells | Bold to pass |