Primary Physiology 2008.1 THURSDAY Morning Session

Candidate No.

Topic	Ouestions	Core Knowledge	Score
1.1	Describe the relationship	Max ventilation 3-4x greater at apex	Store
VP inequality	between ventilation and	 PO₂ 40mmHg higher at lung apex 	
(West pp 67-72)	perfusion of the lung in a person	 Max perfusion basally Q nearly 20x greater at base 	
	while standing?		
	while standing.	• Prompt: are there regional variations in either	
	What are the effects of V/Q	• V/Q inequality impairs uptake or elimination of all gases	
	inequality on gas exchange?	 Majority of blood returns from lung bases where the oxygen saturation is low 	
	inequality on gas exchange:	 Results in blood PO2 being lower than that of mixed alveolar PO2 	
		• Results in blood FO2 being lower than that of mixed alveolar FO2	
	What effect does increasing	PCO2 reduces much more than PO2 increases	
	ventilation to the lungs have on	• FCO2 reduces much more than FO2 increases	
	arterial PO2 and PCO2		/2
1.2	How does the kidney handle	• K+ filtered ~600meq/24hrs	,
Renal regulation K ⁺	potassium?	 Active K+ reabsorption in prox tubules ~560meq/24hrs 	
(Ganong pp 724)	1	 K+ secretion ~502meq/24hrs at distal tubule – amount proportionate to flow rate through distal tubules 	
		 Secretion - Electrical coupling to Na+ reab, thus H+ also 	
		Secretaria Electrical coupling to rate read, that it also	
	How do other ions affect	• Collecting tubules Na reab'd, K excreted, electrical coupling and passive K movement	
	potassium transport across the	 Na reab'd in association with H secretion, K excretion decreased if Na low in distal tubule 	
	membranes in the nephron?	• Na/K 2Cl apical transporter/transport protein	
		• 3Na/2K ATPase	
	Prompt: How is potassium		
	transported into and out of the		
	tubules?	4	/2
1.3	What are the basic factors which	Poiseulle's Law and formula describe these factors; (Radius to 4 th power + 2 others)	
Pressure, flow & resistance	determine the rate of flow of	Where: F is the rate of flow; $\mathbf{P}_{1} = \mathbf{P}_{2}$	
(Guyton pp 164-	blood through a blood vessel?	$P_A - P_B$ is the pressure differential; $F = \frac{P_A - P_B}{R}$	
170)		R is the resistance:	
		r is the radius of the tube; $R = \frac{8 \eta L}{\pi r^4}$	
		η is the viscosity of the fluid L is the length of the tube $F = P_{1} - P_{2} \times \frac{\pi r^{4}}{\pi r^{4}}$	
		$R = \frac{8 \eta L}{\pi r^4}$ $F = P_A - P_B \times \frac{\pi r^4}{8 \eta L}$	
	What factors cause turbulent		
	flow in a blood vessel?	Expressed by Reynold's number; (3 out of 4) Where: ρ is the fluid density;	
	now in a blood vessel?	where. p is the fund density, D is the diameter of the tube; V is the velocity of flow: $Re = \frac{\rho DV}{\eta}$	
		V is the velocity of flow; $Re = \frac{\eta}{\eta}$	
		η is the viscosity of the fluid.	
		The higher the value of Reynold's number the greater the probability of turbulence' which usually occurs when Reynold's	
		number is between 2000-3000.	
			/2

1.4	What are the effects of thyroid	(4 out of 7)	
Thyroid hormones	hormones?	Widespread actions	
Ganong pp 319-328		Metabolically active tissues	
		• Heart - increased rate	
		• Brain - development	
		reticular Act. Sys.	
		• Gut - increased carbohydrate absorbtion.	
		Muskuloskeletal growth	
		Adipose – lipolysis	
	What is the mechanism of	(4 out of 8)	
	action?	Intracellular	
		• At the nuclear level	
		• O2 consumption regulator.	
		• T3 binds better than T4 to receptor	
		Hormone/receptor binds to DNA	
		Affects gene expression	
		Two genesites	
		Alpha Chromosome 17	
		• Beta Chromosome 3	
			/2
1.5	What are the actions of vitamin	(3 of 4)	
Vitamin D Ganong pp 387-388	D?	• Increased absorption of calcium from the intestine by induction of calbindin-D proteins.	
Sulling pp 507 500		• Increased resorption of calcium in the kidneys.	
		Increased osteoblast activity.	
		• Aids calcification of bone matrix.	
	How is the synthesis of vitamin	(3 of 5)	
	D regulated?	• Not closely regulated.	
		 Low calcium leads to increased PTH secretion and increased vitamin D is produced. 	
		 High calcium inhibits PTH and the kidneys produce inactive metabolites. 	
		 Low phosphate increases vitamin D production (and high phosphate inhibits it). 	
		 Vitamin D inhibits the enzyme involved in its synthesis. 	
			/2

Final Score

Primary Physiology 2008.1 THURSDAY Afternoon Session

Candidate No.

Торіс	Questions	Core Knowledge	Score
2.1 Airway Resistance West pp 106-112	What factors impact on resistance in airways? What factors cause turbulent	 Size of airway: R highest in medium sized bronchi, low in very small airways. Lung volume: R decreases with expansion as airways pulled open Bronchial smooth muscle tone: controlled by B sympathetics Gas density: eg heliox -> low R Forced expiration: intrathoracic pressure compresses airways = 'dynamic compression' Expressed by Reynold's number; (3 out of 4) 	
	flow in airways	$\begin{array}{ll} \text{Where:} & \rho \text{ is the fluid density;} \\ \text{D is the diameter of the tube;} \\ \text{V is the velocity of flow;} \\ \eta \text{ is the viscosity of the fluid.} \\ \text{Laminar flow only in small airways, transitional most areas, turbulent in trachea (rapid breathing)} \end{array}$	/2
2.2 Renal blood flow Ganong pp 702-705	What is a typical value for renal blood flow in an adult at rest?	~25% of cardiac output or 1250 ml/min	
Ganong pp 702-705	What factors regulate renal blood flow?	 Chemical: Noradrenaline constricts interlobular and afferent arterioles. (3 of 5) Dopamine causes renal vasodilation. Angiotensin II constricts efferent arterioles to a greater extent than the afferent arterioles. Prostaglandins increase blood flow in the cortex and decrease blood flow in the medulla. Acetylcholine produces renal vasodilation. 	
		Neural: Strong stimulation of the sympathetic nervous system produces renal vasoconstriction.	
		 Autoregulation: Direct contractile response of smooth muscle of afferent arteriole to stretch. NO may be involved. At low perfusion pressures angiotensin II plays a role in constricting efferent arterioles. 	/2
2.3 Factors controlling cardiac output & O_2 consumption Ganong pp 571-576	What factors control cardiac output?	Cardiac Output = Heart Rate x Stroke Volume Heart rate controlled by cardiac innervation – symp. / parasymp. Stroke Volume: • Afterload • Preload - Starling Curve (Fibre length-tension) (2 out of 5): Pericardial pressure Ventricular compliance Attral filling Blood volume	
		Contractile state (3 out of 7): Cardiac innervations Circulating catecholamines Force-frequency relationship	
	What are the major factors which determine myocardial oxygen consumption?	(2 out of 3) Intramyocardial tension Contractile state of myocardium Heart rate (= Ventricular work/beat = SV x MAP)	/2

2.4 Glucocorticoids Ganong pp 372-380	What are the physiological effects of glucocorticoids?	 Metabolic; increased protein catabolism, increased hepatic glycogenesis and gluconeogenesis (raised plasma glucose). Raise peripheral tissue insulin resistance Permissive effects on other reactions Are required for catecholamines to produce calorigenic and lipolytic effects, pressor responses (vascular reactivity) and vasodilatation Inhibit ACTH secretion (feedback) Impair water excretion (mechanism unclear) Reduce circulating basophils and eosinophils and increase other elements Required for stress response Affect EEG waveforms (mild personality changes in insufficiency) 	
	How is glucocorticoid secretion regulated?	 Basal secretion and stress response both dependent on ACTH (Other substances may stimulate adrenal directly but no evidence of role in physiologic regulation) Free glucocorticoids produce negative feedback on ACTH secretion at both hypothalamic and pituitary levels. Effect mediated by action on DNA Stress response ACTH secretion mediated almost exclusively via hypothalamic release of corticotrophin releasing hormone Circadian rhythm. ACTH released in irregular bursts throughout day but much more common in early morning. 75% of cortisol secreted at this time 	/2
2.5 Iron Ganong pp 474-478	Please describe how ingested iron is absorbed.	 Most ingested iron is ferric (3+) but the ferrous (2+) form is absorbed. Minimal absorption in stomach but gastric secretions dissolve iron and aid conversion to the ferrous form. Almost all absorption in duodenum. Iron is transported into enterocytes via DMT1. Some stored as ferritin. Remainder transported out via ferroportin 1 (basolateral transporter) in the presence of hephaestin. Then converted to ferric form and bound to transferrin. Dietary heme is absorbed by an apical transporter andiron is removed from the porphyrin in cytoplasm. 	
	What are the mechanisms that regulate iron absorption?	 Precise mechanisms uncertain, probably related to: Recent dietary intake of iron. State of body iron stores. State of erythropoiesis in bone marrow. The regulatory mechanisms are unclear. 	/2

Final Score

Primary Physiology	2008.	FRIDAY	Morning Session

Торіс	Questions	Core Knowledge	Score
3.1 Elastic Properties of the Lung West pp 96-106	Define lung compliance?	Change in volume / change in pressure (Slope of pressure-volume curve) (Lung "stiffness")	
	What factors influence lung compliance?	 (3 out of 6) Fibrosis Alveolar oedema Elastic tissue Emphysema / age Volume / Size of lung Surface tension in alveoli (Surfactant) 	
	What else does surfactant do?	(2 of 3) • Reduces WOB Prevents collapse Keeps alveoli dry	/2
3.2 Loop of Henle, structure & function Ganong pp 700, 714-718	Please outline the structure of the Lof H	 Thin/descending, Thick/ascending. Situated mostly in the renal medulla Origin from PCT Short (cortical) and long (juxta med.)loops Macula densa at distal end, where joins DCT 	
	What happens to electrolytes in the loop	 (Thin) Descending limb water permeable Fluid becomes hypertonic as descends loop (Thick) Asc limb impermeable to water, NaK Cl transported out, hypotonic at end, so K+ diffuses back Active trans. ATPase 	
	Explain the counter-current concentrating mechanism	 Gradient Exchange (vasa recta) 	/2
3.3 Cerebral blood flow. Brain metabolism & O2 requirements Ganong pp 616-620	What factors determine cerebral blood flow?	 (4 of 5) Intracranial pressure Local constriction/dilation of cerebral arterioles, autoregulation etc MAP at brain level Blood viscosity Mean venous press at brain level 	
	What substances are important for brain metabolism?	 Oxygen ~49ml/min = 20% body O2 consumption Glucose (major energy source) ~77mg/min Glutamate (converted to glutamine as detox mech NH3) ~5.6mg/min 	/2

3.4 Insulin & Glucose Ganong pp 336-340			
	What is the time frame for these effects	 Rapid: glucose, AAs, K into sensitive cells Intermediate: protein synthesis, glycolysis and synthesis, inhibition gluconeogenesis Delayed: lipogenesis 	/2
3.5 Regulation of calcium Ganong pp 383-395	What factors influence the level of free calcium in plasma?	 Protein binding - depends on plasma protein level and pH. Total body calcium bound in bone; bone calcium readily exchangeable or slowly exchangeable (resorption / deposition) Intake GI absorption under influence of vitamin D Renal excretion under vitamin D influence Parathyroid hormone Calcitonin 	
	How does bone resorption occur?	 Osteoclasts are monocytes that develop from stromal cells under influence of RANKL. Attach to bone via integrins in sealing zone of the membrane. Hydrogen dependent proton pumps move into cell and acidify the area. Acid dissolves hydroxyapatite and collagen. 	
		Products move across osteoclast into interstitial fluid.	/2

Final Score