ACID-BASE DISORDERS

The kidneys, lungs, and physiologic buffers normally maintain the serum pH within a narrow spectrum, between 7.36 and 7.44. Such precise physiologic control is required for normal cellular function. Consequently, disorders of kidneys, lungs, and physiologic buffers result in acid-base abnormalities.

Blood pH is determined by the ratio of CO_2 (respiratory influence) to HCO_3^- (renal influence).

 $\mathrm{H^{+}} + \mathrm{HCO_{3}^{-}} \rightleftharpoons \mathrm{H_{2}CO_{3}} \rightleftharpoons \mathrm{H_{2}O} + \mathrm{CO_{2}}$

Acidaemia: pH < 7.36 Alkaemia: pH > 7.44

Acidosis is a pathological process that lowers the HCO_3^- or raises the CO_2 *Alkalosis* is a pathological process that raises the HCO_3^- or lowers the CO_2

Physiologic Buffers.

Defined as a weak acid and its salt, which oppose marked changes in pH.

Buffers mitigate the impact of large changes in available hydrogen ion on plasma pH. These buffers include;

- haemoglobin
- phosphate
- proteins
- bicarbonate

Bicarbonate.

• Open-ended system w/ continuous removal of organic acid made possible by exhalation of CO₂.

.....

 H^+ + buffer⁻Na⁺ \rightleftharpoons buffer⁻H⁺ + Na⁺

:

• Large quantities in kidneys & lungs.

Intracellular Proteins.

• Particularly, *albumin & Hb.*

Bone as Buffer.

- Large reservoir of *bicarbonate* & *phosphate*.
- In reality, only two types of metabolic acidosis are long-lasting enough to cause bone demineralisation
 - Renal tubular acidosis
 - Uraemic Acidosis

Pulmonary Compensation.

This involves a relationship between peripheral chemoreceptors (carotid bodies) and central chemoreceptors (medulla); both of which drive minute ventilation.

• A drop in pH results in increasing minute ventilation (lowering CO₂).

• Takes ~ 4-12 hours for respiratory compensation to bring pH back to normal.

Renal Compensation.

The kidneys play little role in acute compensation of acid-base disorders, as they do not immediately respond to changes in pH.

- Requires 6-12 hours of sustained acidosis to result in active excretion of H⁺.
- H⁺ usually excreted in form of ammonia (NH⁺), with retention of HCO₃⁻.
- Conversely, 6+ hours of alkaemia stimulates renal excretion of HCO_{3} and retention of H⁺ in form of organic acids.

In metabolic acidosis the kidney attempts to preserve Na⁺ by exchanging it for excreted H⁺ or K⁺.

- The quantity of potassium excreted depends on the level of acidosis & the serum K⁺ level.
- In the presence of large H⁺ load, hydrogen ions move from ECF into intracellular fluid, displacing K⁺ outside the cell (maintaining electroneutrality).

In cases of severe acidosis, there is significant overall depletion of total body K+ despite serum hyperkalaemia.

In metabolic alkalosis, there is a shift of H⁺ extracellularly (in exchange for K⁺ and Na⁺) with renal excretion of K⁺ to preserve H⁺.

- Kidneys will also excrete H⁺ in cases of severe hypokalaemia (eg. prolonged NG suctioning) to preserve K⁺.
- Paradoxical *aciduria* is a clinical clue to the magnitude of hypokalaemia.

DIAGNOSTIC STRATEGIES.

Thorough Hx & examination:

- PMHx
- Current medications
- Toxic ingestion
- Vomiting / diarrhoea
- Hydration status
- Urine output
- Level of consciousness
- Respiratory rate

Bloods:

- Serum electrolytes
- pH
- Anion gap & delta gap
- Osmolar gap

THE ANION GAP.

$AG = Na^{+} - (Cl^{-} + HCO_{3}^{-})$

- Normal AG = $12 (\pm 3)$
- · Estimates 'unmeasured anions'
 - Albumin
 - Phosphate
 - Sulfate
 - Organic anions (citrate).
- If AG is raised; consider an excess in organic acids or other acidic substances.

THE DELTA GAP.

 $\Delta G = (\text{calculated AG} - 12) - (24 - \text{measured HCO}_3^-)$

- Helps to resolve the possibility of;
 - Mixed acid-base disorder
 - Further differentiation of an elevated AG metabolic acidosis.
- $\Delta G > +6$ = metabolic alkalosis or respiratory acidosis
- $\Delta G < -6 = a$ mixed disorder (greater loss of HCO₃⁻).

		A	rterial Blood Ga	as Analy	sis		
ABG Parameter			ABG result	(Calculation and interpretation		
pH	>7.45	Alkalaemia		pH	pCO2	Interpretation	
	7.36-44	Normal					
	<7.35	Acidaemia		V	¥	Metabolic acidosis	
pCO2	>45	High	0	1	↑	Metabolic alkalosis	
	35-45	Normal		1	4	Respiratory alkalosis	
	<35	Low		Ļ	î	Respiratory acidosis	
HCO3	>26	High		Corrected standard AG for albumin			
	24+/- 2	Normal		Albumin + 1.5 x Phosphate			
	<22	<22 Low			4		
AG	> 16	High		Anion Gap calculation			
	12+/-4	Normal		$\{[Na+] - [Cl^- + HCO_3]\} = 12 + /-4$			
	< 8	Low	3	Corrected Na+ for AG in hyperglycemia			
Glucose	>10	High		Corrected $Na + = Na + Glucose - 5$			
	< 2	Low		3			
	$\frac{\Delta AG}{\Delta HCO_3} = \frac{AG - 12}{24 - HCO_3}$			Gap: Gap	Gap: Gap calculation for metabolic acidosis		
Gap: Gap				<0.4	<0.4 Low or Normal AG metabolic acidosis		
				0.4-0.8	Norma acidosi	l + high AG metabolic s	
Lactate	<1.9	Normal		0.8-2.0	Pure hi	gh metabolic acidosis	
	>2.0	High			Metabo	olic acidosis with metabolic	
				>2.0	alkalos	is/respiratory acidosis	
pO2	80-100	Normal		PAO2 = [713 x FiO2] - [pCO2 x 1.25]			
	< 80	Hypoxia		A-a gradient = $PAO2 - PaO2 = Age_{+4}$ 4			
			Compensation ru	les for			
	Metabolic acidosis			Metabolic alkalosis			
Expected PCO2	1.5 X [HCO3] + 8 (+/- 2)			0.7 X [HCO3] + 20 (+/- 5)			
	Respiratory acidosis			Respiratory alkalosis			
Expected HCO3	Acute		Chronic	A	cute	Chronic	
	$24 + pCO2 - 40 X_1$ 10		24 + pCO2 - 40 X 4	$24 - \frac{40 - pCO2}{10} \times 2$		$24 - \frac{40 - pCO2}{10} X_5$	
				1			