METABOLIC ALKALOSIS

produced by conditions that increase HCO_3^- or reduce H^+

The diagnosis requires knowledge of the PaCO₂, because elevation of the plasma HCO₃⁻ may be secondary to renal compensation of a chronic respiratory acidosis.

AETIOLOGY:

Usually caused by an increase in $HCO_{3^{-}}$ reabsorption secondary to volume, potassium, or Cl⁻ loss.

An ECF volume reduction can increase the plasma HCO_3^- concentration when combined salt and water losses occur, typically in patients using diuretics. This state forces a contraction of the ECF around a constant plasma HCO_3^- , creating a relative excess in HCO_3^- concentration; this is known as **contraction alkalosis**.

Hypokalaemia can cause H⁺ to shift intracellularly, as well as increased H⁺ secretion to preserve renal potassium losses.

PHYSIOLOGIC COMPENSATION:

BOX 122-5 CAUSES OF METABOLIC ALKALOSIS

Volume-Contracted (Saline-Responsive) Vomiting/gastric suction Diuretics Ion-deficient baby formula Colonic adenomas Postrespiratory acidosis

Normal Volume/Volume-Expanded (Saline-Resistant) Hyperaldosteronism (primary, secondary, or exogenous mineralic corticoids, e.g., licorice, tobacco) Cushing's syndrome Severe potassium depletion Adenocarcinoma Bartter's syndrome Ectopic adrenocorticotropic hormone

Unclassified

Milk-alkali syndrome Carbenicillin therapy Metabolism of organic acid anion (bicarbonate, lactate, citrate) Massive transfusion with citrate anticoagulant or plasmanate (acetate) if renal impairment Nonparathyroid hypercalcemia

Less predictable; it involves acute compensation with the respiratory centre (hypoventilation) & chronic compensation with the kidneys (excretion of excess HCO₃-).

Note: a $PaCO_2$ of > 55 mmHg is unlikely to be cause by simple respiratory compensation for metabolic alkalosis & more likely a ventilation disorder.

MANAGEMENT:

Treatment again aimed at identification and reversal of precipitating or causal factors.

SALINE-RESPONSIVE ALKALOSIS.

Usually for people with low urinary CI- with administration of NaCI.

In severely volume-depleted patients, consultation for admission and administration of intravenous mineral acids (e.g., arginine monohydrochloride) may be necessary.

In patients with severe oedematous states (where saline is relatively contraindicated), *acetazolamide* increases excretion of NaHCO₃.

In severe renal failure, metabolic alkalosis should be treated with *dialysis*.

SALINE-RESISTANT ALKALOSIS.

Usually occurs with mineralocorticoid excess, hypokalaemia and increased secretion of aldosterone.

• Leads to excessive renal excretion of H⁺ and a reabsorption of HCO₃⁻.

Treatment can be successful with K⁺ replacement +/- the addition of *spironolactone* (an aldosterone antagonist).