RADIATION INJURIES

FUNDAMENTALS OF RADIATION PHYSICS:

NONIONISING AND IONISING RADIATION:

- Radiation is energy emitted from a source
- Nonionising radiation does not carry enough energy to remove an electron from an atom → UV, visible light, infrared, microwave, radiowaves
- Ionising radiation → has sufficient energy to displace electrons from atoms, causing them to be charged or ionised as they pass through matter → alpha, beta, gamma particles, neutrons, x-rays
- Types of ionising radiation are outlined below:

Table 11-1 Types of Radiation					
Type (Symbol)	Charge	Penetration	Shield	Hazard	Source
Alpha	+2	Few centimeters in air	Paper, keratin layer of skin	Internal contamination only; requires special detection devices	Heavy radioisotopes (e.g., plutonium, uranium, radon)
Beta	+1	∼8 mm into skin	Clothing	External (skin) and internal contamination	Most radioisotopes decay by beta followed by gamma emission
Neutron	0	Variable	Material with high hydrogen content	Whole-body irradiation	Nuclear power plants, particle accelerators, weapons assembly plants
Gamma and x-rays	0	Several centimeters in tissue	Concrete, lead	Whole-body irradiation	Most radioisotopes decay by beta followed by gamma emission

BIOLOGIC EFFECT OF IONISING RADIATION:

- Effect occurs at the cellular level → high levels may directly cause cell death, but more commonly, lower levels interrupt the cell's reproductive process by damaging its mitotic capability, making the cell unable to divide
- Short-lived cells, such as bloods cells, are quickly depleted, and injury may become evident before new cells are generated
 - Longer-lived cells, such as the lens of the eye, regenerate slowly and injury may not become apparent for years after exposure
 - In general, poorly differentiated cells and cells with a short life span and high turnover rate are most vulnerable to the detrimental effects of radiation
 - Rapidly proliferating cells, such as HAEMATOPOIETIC, GI AND REPRODUCTIVE SYSTEMS, are more radiosensitive than the more slowly dividing cells of the nervous and musculoskeletal systems

MEASURING RADIATION:

UNITS OF MEASURE:

• Can be measured as activity, exposure or dose \rightarrow see below

Table 11-2 Radiation Units of Measure				
Description	Conventional Units	SI Unit	Conversion	
Activity	Curie	Becquerel	1 Bq ~2.7 x 1011 Ci	
Units of activity describe the amount of radioactivity present.			1 Ci ~ 3.7 _x 1010 Bq	
Exposure	Roentgen	Coulomb per kilogram	1 R = 2.58 _x 104 cP/kg	
Units of exposure measure the amount of x-ray or gamma radiation that produces a given number of ionizations in air.				
Absorbed dose	rad	Gray	1 rad = 0.01 Gy	
Units of absorbed dose can be applied to any type of radiation and reflect the energy imparted to matter.			1 Gy = 100 rad	
Dose equivalent	Roentgen equivalents man	Sievert	1 rem = 0.01 Sv	
Units that provide a common scale of measure for the different types of radiation.			1 Sv = 100 rem	

- Allowed annual dose of radiation is 3.0 millisieverts (mSv) and the annual dose above background radiation that is considered safe is 1mSv/year
- See below for dose levels:

Table 11-4 Selected Approximate Levels of Radiation Exposure

Natural background radiation	300 mrem/y (U.S. average)
Chest x-ray (effective dose)	10 mrem
Abdominal x-ray	100 mrem
Lumbar spine x-ray	70 mrem
CT head	200 mrem
CT chest	800 mrem
CT abdomen or pelvis	1000 mrem
Air travel London-New York	4 mrem each way
Annual radiation dose limit (public)	100 mrem
Lethal dose in 50% of exposed subjects within 60 d (4.5 Gy)	450,000 mrem (450 rad*)

LETHAL DOSE OF RADIATION:

- LD 50/60 from exposure to ionising radiation is defined as the dose of ionising radiation that will result in the deaths of 50% of exposed population at 60 days → 4.5gray, 450 rad
 - This value assumes intensive medical therapy is provided, including antibiotics, blood products and reverse isolation

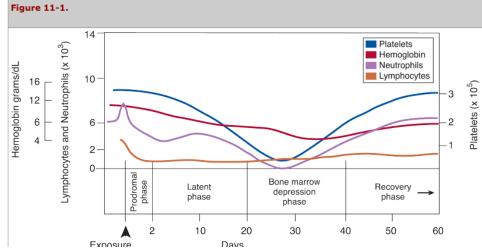
CLINICAL EFFECTS OF RADIATION:

LOCAL RADIATION INJURY:

- Majority of accidents result in partial-body exposure with local radiation damage
- In contrast to whole-body irradiation, partial-body irradiation rarely causes systemic manifestation and the extent and course of cutaneous involvement is dose-dependent → transient erythema, hyperesthesia and itching initially → progresses to ulceration or desquamation by 4 weeks
- Similar to thermal burns, but they differ in that cutaneous radiation injury may be associated with waves of transient erythema as well as delayed onset of pain, followed by a more prolonged and severe pain

WHOLE-BODY IRRADIATION/ACUTE RADIATION SYNDROME:

• Develop when a significant portion of the body is exposed to a high level of penetrating radiation over a short period of time (typically <24 hours) → collectively referred to acute radiation syndrome → a whole body gamma dose of >2 gray (200 rad) is primary cause


Table 11-5 Acute Radiation Syndrome			
Approximate Dose	Onset of Prodrome	Duration of Latent Phase	Manifest Illness
>2 Gy (200 rad)	Within 2 d	1-3 wk	Hematopoietic syndrome with pancytopenia, infection, and hemorrhage; survival possible
>6 Gy (600 rad)	Within hours	<1 wk	GI syndrome with dehydration, electrolyte abnormalities, GI bleeding, and fulminant enterocolitis; death likely
>20-30 Gy (2000-3000 rad)	Within minutes	None	Cardiovascular/central nervous system syndrome with refractory hypotension and circulatory collapse; fatal within 24–72 h

- There are FOUR DISTINCT PHASES seen in unfolding of acute radiation syndrome (ARS):
 - PRODROMAL PHASE → transient period of self-limiting symptoms, the acuity of onset and duration of this phase are directly related to the dose received. Characterised by AUTONOMIC RESPONSE → anorexia, N+V, diarrhoea (high doses)
 - LATENT PHASE → symptom-free period that follows the resolution of the prodromal phase → shorter latent phase relate to higher levels of dose received
 - MANIFEST ILLNESS PHASE → this is divided into three dosedependent SUBSYNDROMES (in ascending order of severity, haematopoietic, GI and CVS/CNS syndromes)

• MANIFEST ILLNESS:

• HAEMATOPOIETIC SYNDROME:

- First organ system to manifest injury at doses above 1.5 to 2 Gy
 - Radiation destroys circulating lymphocytes and damages stem cells in the bone marrow and lymphatic system → the rapid decline in lymphocytes is a hallmark of the haematopoietic syndrome and is one of the best early indicators of the extent of radiation injury

Typical haematologic course after sublethal exposure to total-body irradation

- This syndrome results in pancytopaenic and immunosuppression with subsequent HAEMORRHAGE AND INFECTION as the principal causes of morbidity and mortality
- GI SYNDROME:
 - Doses above 6-7 Gy
 - Onset of nausea, vomiting and often diarrhoea within hours of exposure then latent period of up to one week \rightarrow reappearance of GI symptoms then occurs with severe nausea, vomiting, diarrhoea abdominal pain DAMAGE and \rightarrow OF INTESTINGAL MUCOSAL BARRIER WITH MASSIVE FLUID LOSSES PROFOUND VOLUME RESULTING IN LOSS AND ELECTROLYTE DISTURBANCES \rightarrow
 - Denuded mucosa allows enteric flora to disseminate into the bloodstream and results in FULMINANT ENTEROCOLITIS
 - Few documented cases in humans, all of which have been fatal
- CARDIOVASCULAR AND CNS SYNDROME:
 - Doses of 20-30 Gy
 - Presents with immediate prostration, nausea, vomiting and explosive bloody diarrhoea as well as hypotension
 - Alterations in consciousness, including lethargy, disorientaiton, ataxia and convusions occur within hours after exposure
 - Hypotension is persistent and refractory to all treatment
 - Lymphocyte count promptly falls to near-zero levels
 - UNIVERSALLY FATAL within 24-72 hours → predominantly due to circulatory collapse

RADIATION EVENT MANAGEMENT:

ADVANCE PLANNING \rightarrow CRUCIAL. All pre-hospital providers should have plan for evacuation of victims from a radiation disaster

PREHOSPITAL EMERGENCY MEDICAL MANAGEMENT:

- Emergency responders should establish incident command to identify the hazard
- Personal protective equipment, respiratory protection provided as per protocol
- Lifesaving medical interventions are administered and transportation of seriously injured victims is not delayed, even if the patient is contaminated
- If patient stable → remove clothing and decontaminate and perform radiation monitoring
- NOTIFY LOCAL ED → if contamination is unknown, patient should be assumed to be contaminated and undergo decontamination measures

TRIAGE AND TREATMENT PHILOSOPHIES:

- Triage as per acute medical condition and not specifically on radiation exposure
- Radioactive contamination is never immediately life-threatening, thus surveying or decontamination should never supersede lifesaving medical intervention

PATIENT MANAGEMENT AND TREATMENT:

DECONTAMINATION OF EXTERNALLY CONTAMINATED PATIENTS:

- A patient is externally contaminated when radioactive materials are physically deposited onto the patient's skin or clothing
- The radiation dose from external contamination to either the patient or the medical staff is rarely significant \rightarrow spreading the contamination in the environment and the potential of internalisation are the main hazards with external contamination
- For those surveying positive for radiation → wounds and body orifices should be irrigated first because of the potential for systemic absorption

TREATMENT OF LOCAL RADIATION INJURY:

- ED care of localised cutaneous radiation injury is limited to analgesia, routine burn care and if indicated → surgical referral.
- These patients should be monitored closely fro haemorrhage, infection and necrosis

TREATMENT OF WHOLE-BODY IRRADIATION:

- In most cases, the patient who has been exposed to an external source of penetrating radiation IS NOT RADIOACTIVE OR CONTAMINATED
- Treatment of the irradiated patient in the ED is directed toward alleviating the symptoms of the prodromal phase

- 5HT3 antagonists (ondansetron) are most effective at controlling GI symptoms. Do not give prophylactically as time of onset of vomiting is important in determining radiation dose
- In those with documented high doses \rightarrow comfort care should be prioritised as medical care will be futile
 - Survival is possible for those with lower radiation doses resulting in the haematopietic form of ARS (bone marrow transplant may assist)
- Biologic dosimetry:
 - Time of onset of all symptoms, especially nausea and vomiting should be carefully observed
 - The earliest lab indicator of biologic damage from radiation is marked decrease in peripheral lymphocytes \rightarrow often within 8 hours of exposure
- The ultimate long-term goal is to provide support during the period of deficient defenses against infection and haemorrhage until marrow recovery occurs
 - Supportive treatment may include IV fluids, blood produces, TPN as well as prophylactic antibiotics and antifungals
 - Anaemia, granulocytopaenia and thrombocytopaenia can be expected within one month after significant radiation exposure
 - Haematopoietic colony-stimulating factors and stem cell transplants are being used to combat bone marrow suppression

INTERNALLY CONTAMINATED PATIENTS:

Table 11-9 Commonly Treated Forms of Internal Contamination

- Radioactive material gains entry into the body by three principal routes \rightarrow inhalation, ingestion or absorption from contaminated mucous membranes or abraded skin
- Identification of the specific radionuclide is important for determining the method of treatment (see below):

Radionuclide	Treatment	Mechanism of Action	Usual Administration*
Iodine	Potassium iodide	Blocks thyroid uptake	130 milligrams PO for adults
Plutonium	Ca-DTPA or Zn- DTPA	Chelation	1 gram in 250 mL NS or 5% dextrose in water over 60 min
Tritium	Water	Dilution	Oral: 3-4 L a day for 2 wk
Cesium	Prussian blue	Decrease GI uptake	1 gram in 100-200 mL water three times a day for several days
Uranium	Bicarbonate	Alkalinization of urine	2 ampules in 1 L NS at 125 mL/h

• Once radioactive material crosses into the extracellular fluid, incorporation has occurred and elimination is more difficult → decorporation include blocking agents, isotopic dilution, chelation

PRENATAL EXPOSURES:

- After 2 weeks' gestation, organogenesis begins and the embryo is at risk of congential malformations → the risk of injury is greatest for the particular organ system that is under development at the time of radiation exposure
 - After 7 weeks, major organogenesis is complete (except CNS)
 - Data derived from Japanese atomic bomb survivors suggest the most common in utero injuries are related to the CNS \rightarrow particularly microcephaly and mental retardation