# CALCIUM [Ca<sup>2+</sup>]

The most abundant mineral in the human body.

- 99% bound in bone. Remainder in ECF compartment.
- Homeostasis maintained by parathyroid hormone, vitamin D & calcitonin.

## PTH.

- Released from parathyroid glands in response to  $\downarrow$  Ca<sup>2+</sup> levels.
- Stimulates osteoclasts to 1 bone resorption.
- <sup>↑</sup> Ca<sup>2+</sup> resorption [and PO<sub>4</sub> excretion] by kidney.
- 1 Ca<sup>2+</sup> intestinal absorption (w/ calcitriol).

## Calcitriol.

- Influenced by <sup>†</sup> Ca<sup>2+</sup> levels (plus adrenaline, glucagon & gastrin).
- Inhibits osteoclasts & potentiates Ca<sup>2+</sup> loss through the kidney.

Note. • Calcium is protein-bound (albumin), free active ion or non-ionised.

• The *ionised-fraction* is physiologically active.

## HYPOCALCAEMIA.

Defined as an ionised Ca<sup>2+</sup> level < 1.0 mmol/L. [Normal 1.05-1.30 mmol/L].

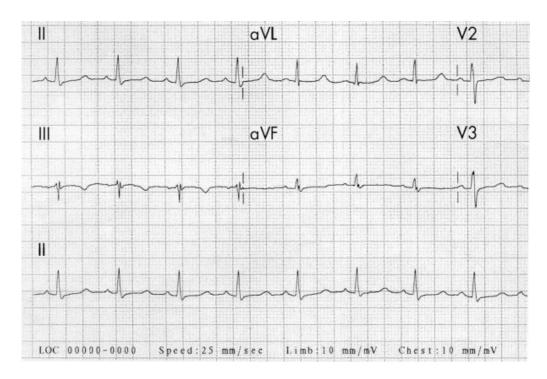
## Pathophysiology.

Many causes of hypocalcaemia including shock, sepsis, ARF & pancreatitis. The tables below have a larger list of DDx.

- · Cellular dysfunction.
  - Any interference to cell-metabolism will \$\product iCa2+\$ levels.
  - Allows Ca<sup>2+</sup> movement into cytoplasm of poor-functioning cells.
- · Pancreatitis.
  - · Lipase breaks down fat into fatty-acids & glycerol.
  - Fatty acids combine with  $Ca^{2+} \rightarrow saponification$ .
- Drugs.
  - as in Table 21-15.
- Post-operative Hypocalcaemia.
  - ~10% of parathyroidectomy patients will develop hypoparathyroidism & subsequent hypocalcaemia.
- Renal Failure.
  - ?due to hyperphosphataemia + ↓ vitamin D production.
- Phosphate Overload.
  - eg. rhabdomyolysis.

| Table 21-14 Some Causes of Hypocalcemia |      |
|-----------------------------------------|------|
|                                         | Та   |
| Decreased calcium absorption            |      |
| Vitamin D deficiency                    | Pho  |
| Malabsorption syndromes                 | Phe  |
| Increased calcium excretion             | Gei  |
| Alcoholism                              | Cis  |
| Chronic renal insufficiency             | Her  |
| Diuretics                               | The  |
| Endocrine disorders                     | Pro  |
| Hypoparathyroidism                      | Glu  |
| Pseudohypoparathyroidism                | Nor  |
| Drugs (Table 21-15)                     |      |
| Miscellaneous                           | Citr |
| Sepsis                                  | Loc  |
| Acute pancreatitis                      | Glu  |
| Massive transfusions                    | Ma   |
| Hypomagnesemia                          | Soc  |
| Rhabdomyolysis                          | 1    |

| Table 21-15 Drugs that Can Cause Hypocalcemia |
|-----------------------------------------------|
| Phosphates (e.g., enemas, laxatives)          |
| Phenytoin, phenobarbital                      |
| Gentamicin, tobramycin, actinomycin           |
| Cisplatin                                     |
| Heparin                                       |
| Theophylline                                  |
| Protamine                                     |
| Glucagon                                      |
| Norepinephrine                                |
| Citrate                                       |
| Loop diuretics                                |
| Glucocorticoids                               |
| Magnesium sulfate                             |
| Sodium nitroprusside                          |


## Symptoms & Signs.

Serious physiologic changes do not occur until iCa<sup>2+</sup> levels are < 0.7-0.8 mmol/L.

- ↓ myocardial contraction (2\* to inhibiting relaxation)
  - Bradycardia, hypotension.
  - QTc prolongation
- Paraesthesias (mouth & fingertips).
  - Muscle weakness & spasm.
  - Hyperactive deep-tendon reflexes.
- Chvostek sign:
  - Tapping facial nerve  $\rightarrow$  facial twitching.
- Trousseau sign: carpal spasm produced by elevated BP-cuff > 3 mins.
  - Most reliable indicator.
- Anxiety, irritability, confusion, psychosis.

Hypocalcaemia & the ECG...

- Most characteristic finding is *prolonged*
- *QT interval* (typically the ST-segment).
- T-wave is normal.



## Management.

Tailored to the individual presentation & directed towards the underlying cause.

- Prolonged symptom duration (& asymptomatic patient) can be treated with oral replacement (with or without Vitamin D).
- IV replacement recommended for symptomatic cases (iCa<sup>2+</sup> <0.65 mmol/l).
  - 10mL of 10% CaCl (or 10-30mL 10% Ca-gluconate) over 10-20mins.
    - · Infusion to follow.

Caution: Do not give if patient is on *digoxin*.

Empirically given IV Calcium during massive transfusion.

• 10mL 10% CaCl per 4-6 units of pRBC.

Replace OTHER electrolytes also (esp. magnesium).

## **HYPERCALCAEMIA.**

Common. ~90% assoc. w/ hyperparathyroidism or malignancy. Defined as an iCa<sup>2+</sup> > 1.35mmol/L.

#### BOX 123-9 CAUSES OF HYPERCALCEMIA

Primary hyperparathyroidism Malignant disease Parathyroid hormone-related protein Ectopic production of 1,25-dihydroxyvitamin D Other bone-resorbing substances Osteolytic bone metastasis **Medications** Thiazide diuretics Lithium Estrogens Vitamin D toxicity Vitamin A toxicity Calcium ingestion Granulomatous disorders Sarcoidosis Tuberculosis Coccidioidomycosis Berylliosis Histoplasmosis Leprosy Nonparathyroid endocrine disorders Hyperthyroidism Adrenal insufficiency Pheochromocytoma Acromegaly Vasoactive intestinal polypeptide-producing tumor Miscellaneous Milk-alkali syndrome Immobilization Idiopathic hypocalcemia of infancy Physiologic (in the newborn)

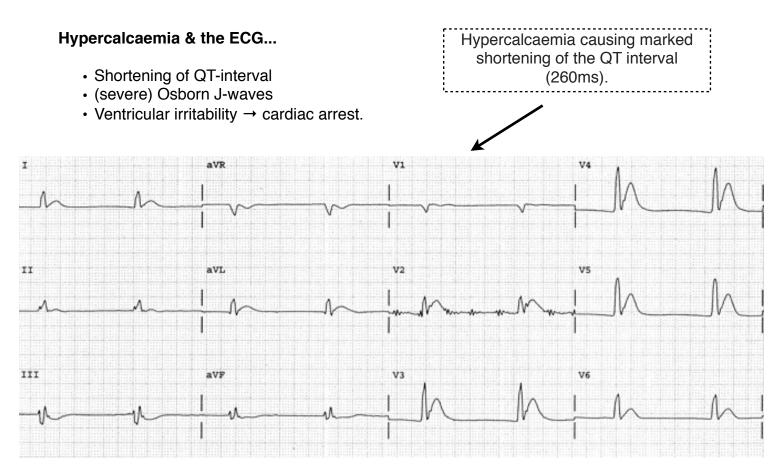
#### BOX 123-10 CLINICAL FEATURES OF HYPERCALCEMIA

#### Neurologic

Fatigue, weakness Confusion, lethargy Ataxia Coma Hypotonia, diminished deep tendon reflexes

#### Cardiovascular

Hypertension Sinus bradycardia, atrioventricular block ECG abnormalities (short QT, bundle branch block) Ventricular dysrhythmias Potentiation of digoxin toxicity


#### Renal

Polyuria, polydipsia Dehydration Loss of electrolyte Prerenal azotemia Nephrolithiasis Nephrocalcinosis

#### Gastrointestinal

Nausea, vomiting Anorexia Peptic ulcer disease Pancreatitis Constipation, ileus

stones (renal calculi), bones (osteolysis), moans (psychiatric disorders), groans (peptic ulcer disease, pancreatitis, and constipation)



## Management.

Initiated immediately with evidence of severe dehydration, altered LOC or symptomatic dysrhythmias. Consists of;

- Volume replacement
- Decreasing mobilisation of Ca<sup>2+</sup> from bone.
- Correcting the underlying disorder.
- Up to 1/3 of patients will have *hypokalaemia* also. Check other electrolytes !!
  Hypomagnesaemia is also common.
- 1. IV Fluids.
  - Normal saline.
  - Targeting UO > 100-150mL/hr
  - Modest ↓ in Ca<sup>2+</sup>
  - Correct electrolyte
  - abnormalities
- 2. Bisphosphonates
  - Usually under advisement of in-patient specialist !!
  - Palmidronate 90mg is most commonly used.
  - Calcitonin can also be used.
- 3. Loop diuretics
  - Inhibit Ca<sup>2+</sup> reabsorption.
  - Must be adequately volume-resuscitated prior to its use.
  - NO thiazides.
  - · Its use remains controversial & possibly no longer recommended.
- 4. Underlying cause.
  - Further investigation required.
    - PTH & Vitamin D levels.
      - Myeloma screen
    - Withhold offending medications.

Restores GFR, also presents 1 Na+ to renal tubule (1 Ca<sup>2+</sup> excretion)