FLUIDS

TBW

~60\% body weight

ICF
2/3 total body water

ECF $1 / 3$ total body water

Intravascular Fluid $1 / 4$ ECF ~8\% total body water

Interstitial Fluid 3/4 ECF ~25\% total body water

Table 21-1 Electrolyte Concentrations of Fluids (mEq/L)

Solution	Plasma	Interstitial	Intracellular	Normal Saline	Lactated Ringer's Solution
Cations					
Sodium	142	144	10	154	130
Potassium	4	4.5	150	-	4
Magnesium	2	1	40	-	-
Calcium	5	2.5	-	-	3
Total cations	153	152	200	154	137
Anions					
Chloride	104	113	-	154	109
Lactate	-	-	-	-	28
Phosphates	2	2	120	-	-
Sulfates	1	1	30	-	-
Bicarbonate	27	30	10	-	-
Protein	13	1	40	-	-
Organic acids	6	5	-	-	137
Total anions	153	152	200	154	

Solutes.

- $1 \mathrm{Eq}=$ Mass of 1 mol of a substance (in grams) divided by its charge.
- 1 Eq of $\mathrm{Na}^{+}=23$ grams, whereas 1 mol of $\mathrm{Ca}^{+}=40 \mathrm{grams} / 2=20 \mathrm{grams}$
$\cdot \therefore 1 \mathrm{~mol}$ of $\mathrm{Na}^{+}=1 \mathrm{Eq}$ of Na^{+}, whereas 1 mol of $\mathrm{Ca}^{+}=2 \mathrm{Eq}$ of Ca^{+}!
- Osmole = Amount of substance (in moles) that dissociates to form 1 mol of osmotically active particular.
- eg. $0.5 \mathrm{~mol} \mathrm{NaCl} \rightarrow 0.5 \mathrm{~mol}$ of both $\mathrm{Na}^{+} \& \mathrm{Cl}^{-}$in soln. $\rightarrow 1$ osmole !!
- Osmolarity $=2 x[\mathrm{Na}+]+$ glucose + urea + ethanol
- $2 x\left[\mathrm{Na}^{+}\right]$estimates $\mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{HCO}^{-}$
- Normally 275-295 mOsm/L
- Normal Osmolar Gap $=\sim 10$.

Homeostasis.

- Average normal adult requires;
- 2000-3000mL of $\mathrm{H}_{2} \mathrm{O}$ per day.

