HYPONATRAEMIA

The Basics.

- Na < 135 mmol/L
- Results from primary H2O gain &/or Na loss greater than that of H2O.
 Can also result from alteration in body-water distribution & laboratory error.
- Symptoms are usu. related to *rate of change* in Na-levels.
 - <120 mmol/L more likely assoc. w/ symptoms
- Symptoms include;
 - N&V, anorexia, muscle cramps, confusion lethargy.
 - Severe cases coma & seizures.

Pathophysiology.

CNS.

- ↓ serum Na creates a concentration-gradient across BBB. Draws H2O into brain.
 - · Alters consciousness, agitation, headache, seizures & coma.
 - Slower onset associated w/ more non-specific symptoms.
- · Brain susceptible to injury with Na correction.
 - Rapid ↑ in serum Na (ahead of brain solute recovery) results in fluid shift out of CNS cells → *Central Pontine Myelinolysis.*

CVS.

- In volume-deplete patients, hyponatraemia further 1s intravascular volume by shifting fluid from ECF to ICF spaces.
- ADH release occurs in all hyponatraemic patients [to preserve intravascular volume by vasoconstriction].

Renal.

- Kidneys response to hyponatraemia is to produce dilute urine.
 - Hindered by the presence of [↑] ADH concentrations.
- Urinary Na < 10mmol/L usu. indicates *normal renal handling of sodium*.
 - Urinary Na > 20mmol/L indicates tubular damage or *natriuretic response to hypervolaemia*.

<u>Diagnosis.</u>

First Step - Osmolalities.

- True hyponatraemia = ↓ plasma osmolality.
- Factitious hyponatraemia = normal or 1 plasma osmolality.

Hypertonic hyponatraemia [Osmol > 295];

- Hyperglycaemia
- Mannitol excess
- Glycerol therapy

Isotonic hyponatraemia [Osmol 275-295]; "pseudohyponatraemia"

- Hyperlipidaemia
- Hyperproteinaemia (eg. myeloma, Waldenstrom)

If HYPOTONIC, proceed to next step.

BOX 123-1 CAUSES OF HYPONATREMIA

Sampling error Pseudohyponatremia Hyperlipidemia Hyperproteinemia Redistributive type Hyperglycemia Mannitol Hypovolemic type **Renal losses** Gastrointestinal Third-space losses Excessive sweating Addison's disease Euvolemic type SIADH Psychogenic polydipsia Hypervolemic type Congestive heart failure Hepatic cirrhosis Nephrotic syndrome

Second Step - Volume Status.

- · Euvolaemia vs Hypovolaemia vs Hypervolaemia
- Consider predisposing factors.

Results from intracellular volume expansion w/ consequent derangement of cell functions.

- Disproportionate loss of Na & H2O.
- · Can be further assessed by urinary sodium.

Third Step - Urinary Sodium.

- > 20mmol/L usu. renal loss of Na
- < 20mmol/L usu. extrarenal loss of Na & H2O.</p>

Hypovolaemic hyponatraemia.

- Disproportionate loss of Na & H2O.
- Often inadequate H2O replacement (via oral intake or hypotonic fluids).
- Loss of Na can be renal or extrarenal.

Renal	Extrarenal	
Diuretic use	Volume replacement (hypotonic fluids)	
Salt-wasting nephropathy (RTA, CRF, interstitial nephritis)	GIT losses (vomiting, diarrhoea, fistula, NGT)	
Osmotic diuresis (glucose, mannitol)	Third-space losses (burns, pancreatitis)	
Mineralocorticoid deficiency	Sweating (eg. cystic fibrosis)	

Hypervolaemic hyponatraemia.

- Total body water excess.
- Impaired ability to excrete a H2O-load in excess of Na-retention.
- 1st group: generalised oedematous states w/out advanced renal insufficiency.
- 2nd group: acute or chronic renal failure

Urinary Na < 20 mmol/L	Urinary Na > 20 mmol/L	
Congestive cardiac failure (low-flow to kidneys → stimulates ADH)	Renal failure (inability to excrete free H2O)	
Nephrotic syndrome		
Cirrhosis		

Euvolaemic hyponatraemia.

- Combination of normal volume state & hyponatraemia.
 - Not clinically oedematous & nearly normal total-body Na.
- Typically, urinary-Na is > 20mmol/L (or higher) in states of ADH-excess.

DDx for Euvolaemic Hyponatraemia

SiADH - see other table

Hypothyroidism

Drugs

Water intoxication [psychogenic polydipsia]

Glucocorticoid excess

Porphyria

Diagnostic Criteria for SiADH

Hypotonic hyponatraemia

Clinical euvolaemia

Inappropriate urine concentration [Ur Osm > 100 mmol/kg]

> 1 Urinary Na⁺ [> 30 mmol/kg]

Normal adrenal, renal, cardiac, hepatic & thyroid function

Correctable w/ H2O-restriction

Causes of SiADH				
CNS	Pulmonary	Tumour	Drugs	
Tumour or trauma	Tumour	Lung	Diuretics	
CVA, SAH	Tuberculosis	Pancreatic	Cyclophosphamide	
Meningoencephalitis or abscess	Pneumonia, abscess or aspergillosis	Thymoma	Exogenous vasopressin	
Guillain-Barre	COPD	Ovarian	Vincristine	
Multiple sclerosis	Cystic fibrosis	Lymphoma	many many more	

Emergency Management.

- The vast majority of cases will require little urgency in their management.
- If severe (Na < 115 mmol/L) or if symptomatic (coma, seizures, focal neurological findings) then treatment is required...

Rule of 3's (Acute)

- 3mL/kg of 3% Saline over 30mins
- Aim to 1 2-6 mmol acutely.
- Avoid correcting by 0.5-1 mmol/hour (Max: 10-12mmol in 24 hours) !!

Rule of 6's (Chronic)

- Six-a-day makes sense for safety. (Do not 1 by > 6mmol in 1st 24 hrs)
- · Six in six hours for severe symptoms and stop !!