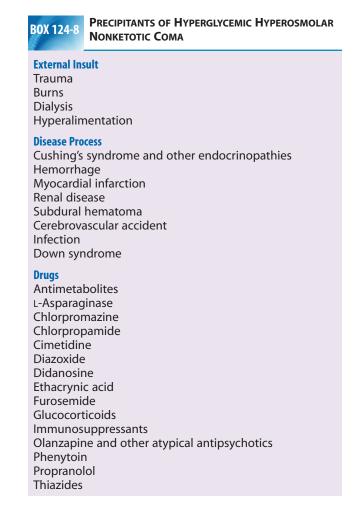
HYPERGLYCAEMIC HYPEROSMOLAR NON-KETOTIC COMA


HHS (or HONK) represents a syndrome of acute diabetic decompensation characterised by marked hyperglycaemia, hyperosmolarity & dehydration with associated decreased mental functioning (that can progress to frank coma).

- · Ketosis & acidosis are generally minimal or absent.
- Focal neurological signs are common.
- DKA and HHS can occur together.

Pathophysiology.

The exact pathophysiology will vary from patient to patient, however most HHS patients are elderly & a contributing factor is declining renal function (& associated decreased renal clearance of glucose).

- Decreased insulin action.
 - Gluconeogenesis, glycogenolysis, reduced peripheral glucose uptake.
- Fluid shift (intracellular space --> extracellular space).
- Profound osmotic diuresis.
 - Extremely hypotonic.
 - Urine Na⁺ = 50-70mmol/L
- Diuresis leads to profound dehydration.
 - Hyperglycaemia
 - Hypernatraemia (w/ assoc. hypertonicity).
- Compounded by inadequate fluid intake (stroke, Alzheimer's, etc...)
- Ketone formation limited by lower levels of circulating FFA's.

Clinical Features.

The prodrome is significantly longer than for DKA.

Extreme dehydration, hyperosmolality, volume depletion (up to 24% fluid deficit) & CNS findings predominate.

Fever, thirst, polyuria or oliguria are commonly found symptoms.

Up to 20% will have no prior Hx of T2DM.

There may be evidence of the precipitating/underlying cause.

Neurological symptoms are varied & include; seizures (generalised or focal), stroke or hemiplegia, choreoathetoisis, ballismus, dysphagia, myoclonus, hemianopsia, nystagmus, visual hallucination & acute quadriplegia.

Diagnostic Strategies.

- Blood Glucose: > 30mmol/L
 - Ketones < 3mmol/L.
 - pH > 7.30 or HCO3 > 15mmol/L
- Serum Osmolarity: > 320-350 mOsmol/L

Calc. Osmolarity = 2x [Na+] + urea + glucose + EtOH.

- Elevated urea/creatinine.
- Deranged electrolytes (particularly Na⁺).
 - Potassium, phosphate, magnesium (may seem elevated but there is generally a whole body deficit).

Corrected Sodium = measured Na⁺ + [glucose/3]

Differential Diagnosis.

Identical to that of DKA.

- Alcohol vs starvation ketoacidosis.
- DDx of HAGMA & raised osmolar gaps (toxic alcohols).
- Water intoxication w/ dilutional hyponatraemia.
- DDx of stroke/coma/altered mental state.

+ Marked hyperglycaemia (>30 mmol/L) without significant hyperketonaemia (<3.0 mmol/L) or acidosis (pH>7.3, bicarbonate >15 mmol/L)

Osmolality >320 mosmol/kg

Characteristic features of a person with HHS:

Hypovolaemia

Management.

General Measures.

- The approach to the patient w/ severe DKA is the same as any patient in extremis.
- ABCD approach.
- Obtunded & vomiting, requires airway protection.
- Hypovolaemic shock requires aggressive fluid resuscitation.
- · Identify & treat the precipitating illness.

Deby/dration.

GOAL: Expansion of intravascular volume & extravascular volume, plus restore

% Saline (or Hartmann's) is appropriate.

- Normal Saline is already hypotonic relative to patients serum.
- 1st liter over 1st hour, 2nd liter over next 2-4 hours, as a rough guide.
- Aim 3-6 liters in first 12 hours.
- Treat more aggressively if patient is in shock !!
- *Hypotonic fluid (0.45% saline)* may be required if osmolality is not declining despite adequate positive fluid balance.
- Serum sodium levels should not fall > 10mmol in 24 hours !!
- · Cautious administration to avoid fluid overload.
- Glucose should be added to IV fluids when serum levels drop to 15-16mmol/L.
 - Aim to control glucose drop by < 5mmol/hr.

		For 60 kg patient	For 100 kg patient
Water	100-220 ml/kg	6-13 litres	10-22 litres
Na+	5-13 mmol/kg	300-780 mmol	500-1300 mmol
CI-	5-15 mmol/kg	300-900 mmol	500-1500 mmol
К+	4-6 mmol/kg	240-360 mmol	400-600 mmol

Table 1 – Typical fluid and electrolyte losses in HHS (Kitabachi 2009)

Electrolytes.

• as per management for DKA.

<u>Insulin.</u>

- as per DKA management.
- Start after volume resuscitation commences.
- Infusion @ 0.05 0.1 units/kg/hr.
 - May need to increase to 5 units/kg/hr.
- No bolus.

Other Considerations.

- Vigorous search for underlying precipitant.
- If seizures occur; phenytoin is contraindicated.
 May impair endogenous insulin release.
- DVT prophylaxis is crucial.
 - Volume depletion, hyperviscosity etc.
- Foot ulcer prevention / Pressure area care.

Complications.

- Cerebral oedema / pontine myelinolysis.
- Cardiac failure/ischaemia. Renal failure.

SUMMARY OF TREATMENT FOR HYPERGLYCEMIC HYPEROSMOLAR NONKETOTIC COMA

Identify HHNC, then treatment is the same as initial DKA treatment.		
1. Supplement insulin.		
\pm Bolus: 0.05–0.1 U/kg regular insulin IV		
Maintenance: 0.05–0.1 U/kg regular insulin IV		
Caution: Serum glucose rapidly corrects with fluid		
administration alone; monitor glucose to avoid		
hypoglycemia.		
Change IV solution to D_sW 0.45% NS when glucose		
≤ 300 mg/dL.		
 Rehydrate. Rapid administration of 2–3 L NS over first several hours 		
CVP monitoring may be necessary in patients with		
history of heart disease.		
Correct one half of fluid deficit in first 8 hours,		
remainder over 24 hours.		
3. Correct electrolyte abnormalities.		
Sodium		
Correct with administration of NS and 0.45% NS.		
Potassium		
First ensure adequate renal function.		
Add 20–40 mEg KCl to each liter of fluid.		
Phosphorus		
Usually unnecessary to replenish		
Magnesium		
Correct with 1–2 g MgSO ₄ (in first 2 L if magnesium is		
low).		
4. Correct acidosis.		
Add 44–88 mEq/L to first liter of IV fluids <i>only</i> if pH \leq 7.0.		
Correct to pH 7.1.		
5. Search for and correct underlying precipitant.		
6. Monitor progress and keep meticulous flow sheets.		
Vital signs		
Fluid intake and urine output		
Serum glucose, K ⁺ , Cl ⁻ , HCO ₃ ⁻ , CO ₂ , pH, ketones		
Amount of insulin administered		
7. Admit to hospital or intensive care unit.		

Disposition.

All patients presenting to ED with a diagnosis of HSS/HONK should be admitted for further treatment.

The presence of one or more of the following should indicate admission to HDU.

- Osmolality > 350 mosmol/kg.
- Sodium > 160mmol/L
- pH < 7.10
- Hypokalaemia (< 3.5mmol/L) or Hyperkalaemia (> 6mmol/L)
- GCS < 12.
- Oxygen Saturations < 92% (on room air)
- Systolic BP < 90mmHg.
- Pulse > 100/min or < 60/min.
- Urine Output < 0.5 mL/kg/hr
- Creatinine > 200.
- Hypothermia.
- Macrovascular complication (ACS, CVA)