

# Endocrine, Metabolic, & Nutrition

# Acid/Base

## **Definitions**

Acidemia: low blood pHAlkalemia: high blood pH

Acidosis: the process that lowers pHAlkalosis: the process that raises pH

#### Classifications

|                       | Primary | Response | Response<br>Mechanism      |
|-----------------------|---------|----------|----------------------------|
| Metabolic Acidosis    | ↓ HCO3  | ↓ pCO2   | Hyperventilation           |
| Metabolic Alkalosis   | ↑ HCO3  | ↑ pCO2   | Hypoventilation            |
| Respiratory Acidosis  | ↑ pCO2  | ↑ HCO3   | ↑ renal HCO3<br>absorption |
| Respiratory Alkalosis | ↓ pCO2  | ↓ HCO3   | ↓ renal HCO3<br>absorption |

- The compensatory response and primary problem are in the SAME direction
- Normal values: pH 7.4 / HCO3 24 / pCO<sub>2</sub> 40 / AG 12 +/-2 (\*Memorize!)

# 4 Step Approach to Abnormal pH

- 1. Acidemia vs Alkalemia
- 2. Respiratory vs Metabolic
- 3. Look for mixed disorder
- 4. In metabolic acidosis, look for anion gap (AG)

#### Acidemia vs Alkalemia

Is the pH above or below 7.4?

## Respiratory vs Metabolic



- Look at HCO3 and pCO2
  - ↓ HCO3 = primary metabolic acidosis
  - ↑ pCO2 = primary respiratory acidosis
  - OPPOSITE if alkalosis

#### **Look for Mixed-Disorder**

- Focus on compensatory response
- Renal response can take 3-5 days; respiratory response immediate
- Compensation for Respiratory (1325)
  - Respiratory Acidosis
    - Acute: ↑ pCO2 10 = ↑ HCO3 1
      Chronic: ↑ pCO2 10 = ↑ HCO3 3
  - Respiratory Alkalosis
    - Acute: ↓ pCO2 10 = ↓ HCO3 2
    - Chronic: \pCO2 10 = \pm HCO3 5
- Compensation for Metabolic
  - Metabolic Alkalosis (007)
    - ↑ HCO3 1 = ↑ pCO2 0.7
  - Metabolic Acidosis: Rule of 15s
    - HCO3 + 15 = pCO2 +/- 2 and last 2 digits of pH +/- 2
    - If rule is violated = mixed disorder!

# In Metabolic Acidosis, Look for Anion Gap (AG)

• Na – (HCO3 + CI)

# Differential Diagnoses

- Wide Anion Gap Metabolic Acidosis: MUDPILES
  - Methanol, Uremia, DKA/AKA, Paraldehyde, Isoniazid, Lactic Acidosis, Ethylene Glycol, Salicylate
- Non-Gap Metabolic Acidosis: HARDUPS
  - Hyperventilation (compensation), Acetazolamide, Renal tubular acidosis,
    Diarrhea, Ureteral diversion, Pancreas, Spironolactone
  - MOST COMMON: Diarrhea + Spironolactone!
- Respiratory Acidosis (any cause of hypoventilation)
  - o Pulmonary edema, pneumonia, obstruction
- Respiratory Alkalosis
  - Anxiety, mechanical ventilation, CNS disease
- Metabolic Alkalosis
  - Volume contraction, vomiting, diuretics

#### Pearls

- Respiratory versus metabolic: remember compensation is same direction but switch the variable!
- Look for mixed disorder: know how to calculate compensation
- Respiratory acidosis/alkalosis: remember **1325** (acute vs chronic)
- Metabolic acidosis: remember gap or no gap and 0.7 (HCO3 by 1; CO2 by 0.7)
- Metabolic alkalosis: rule of 15s (HCO3 + 15 = pCO2, last 2 digits of pH)



- Know Differential Diagnosis:
  - Gap Metabolic Acidosis: MUDPILES
  - Non Gap Metabolic Acidosis: HARDUPS (\*diarrhea/spironolactone)
  - Respiratory Acidosis: any cause of hypoventilation
  - Respiratory Alkalosis: anxiety, mechanical vent, CNS disease
  - Metabolic Alkalosis: volume contraction, vomiting

# Glucose Metabolism - Diabetes

#### **Basics**

- Glucose Metabolism: insulin allows tissue uptake of glucose, decreases hepatic glucose production, and decreases lipolysis
- Type I Diabetes (T1DM): a deficiency of insulin
- Type II Diabetes (T2DM): the body develops resistance to insulin
- Symptoms (regardless of type): polyuria, polydipsia, weight loss, nocturia, blurry vision, yeast infection

# **Diagnosis of Diabetes**

- Fasting Blood Sugar >126 mg/dL
- Random Blood glucose >200 mg/dL WITH symptoms (e.g. polyuria/dipsia)
- Blood sugar >200 mg/dL after OGTT (oral glucose tolerance test)
- Hemoglobin A1C >6.5%

# Type 1 DM: Insulin Deficiency

- Who: childhood disease; bimodal peaks at 4-6 years and 10-14 years; thin; autoimmune (destruction of pancreatic beta cells); runs in families
- Initial presentation: polyuria/polydipsia or frank DKA
- Tx: insulin

# DKA in Type 1 DM

#### **Basics**

- Pathophysiology: hormones levels change in childhood → glucose excess →
  osmotic diuresis causing dehydration with excess urination. Increased lipolysis →
  increased Acetyl CoA → Acetyl CoA shunted to anaerobic metabolism → ketones
  produced (beta-hydroxybutyrate and acetone)
- DKA precipitants: infection, omission of insulin dose, first presentation of DM, myocardial infarction, no specific cause identified
- Symptoms: polyuria, polydipsia, weight loss, vomiting, abdominal pain, weakness, blurry vision, history "I ran out of my Insulin"
- Physical Exam: dehydration, acetone (fruity) smell, abdominal tenderness, tachycardia/hypotension/shock, altered mental status (AMS), Kussmaul respirations, coffee ground emesis
  - o Coffee ground emesis: up to 9%; erosive esophagitis, hemorrhagic



gastritis; rarely need emergent GI endoscopy for Hemorrhagic gastritis in DKA!

# **Work Up**

- Fingerstick glucose, CBC, Chem panel (look at bicarb), serum pH, UA or serum ketones
- **Diagnosis of DKA:** blood glucose >250, pH <7.3, serum bicarb <18, anion gap >10, serum/urine ketones positive, beta-hydroxybutyric acid positive
- Remember to check glucose every hour and electrolytes/pH every 2-4 hours
- Other tests to consider: EKG, blood cultures, CXR, LFTs, lipase, CK, troponin, lumbar puncture
- VBG vs ABG: no difference in pH + ABG carries added risk of median nerve palsy and radial artery aneurysm = do VBG instead!

# **Grading Severity of DKA**

- Mild: pH 7.25-7.30, serum bicarb (mEq/l) 15-18, alert
- Moderate: pH 7.00-7.24, bicarb 10-15, drowsy
- Severe: pH <7.0, bicarb <10, coma = keep a CLOSE eye on these patients!

# Tx of DKA: Four Major Components

- 1. FLUIDS: will decrease glucose to 300 mg/dL
  - a. Fluid deficit is ~100mL/kg
  - b. Start with a 2L NS bolus in adults (kids: 10-20 ml/kg)
  - c. Once glucose <250 change to D5 ½ NS

#### 2. ELECTROLYTES

- a. **Potassium**: total body potassium deficit; average deficit is 3-5 mEq/kg (may see relative hyperkalemia 2/2 hydrogen-potassium pump in acidosis)
  - i FKG
  - ii. Do not treat with insulin until you know the K+ level. If you give insulin to a patient with low K, it will drive additional K into the cell and can cause death
  - iii. K <3.3: 40 mEg KCL; no insulin until K >3.3
  - iv. K 3.3-5.0: 20-30 mEg KCL in each L NS
  - v. K >5.0: Insulin and NS, don't need to replace K
  - vi. When replacing K, replace Magnesium
- b. **Bicarbonate**: controversial; recommended by ADA for pH <7.0
  - i. If patient is in severe DKA and intubated, you can consider giving bicarbonate, but there is no great evidence to support it
- c. **Magnesium:** depleted 2/2 osmotic diuresis, replace Mg
- d. Sodium: Falsely lowered in DKA
  - Add 1.6 to measured Na+ for every glucose value of 100 over 100 mg/dL
  - ii. Will correct with fluids
  - iii. If high treat with ½ NS
- 3. INSULIN: shuts off ketogenesis
  - a. Start with 0.1 units/kg/hr gtt, if glucose doesn't decrease by 50 mg/dL in first hour then double the rate (no need for initial bolus)
  - b. Goal is NOT normoglycemia, but resolution of acidosis/ketosis



- c. Transition to Regular Insulin SQ when pH is >7.3
  - i. Give 5 units per glucose value of 50 over 150 mg/dL (max of 20 units)
  - ii. Stop the gtt 1 hour after SQ insulin administered
- 4. Treat the PRECIPITANT of the DKA!

# **Complications of DKA Treatment**

- Minimized by: glucose check q 1 hour, electrolytes 1 2-4 hours, pH q 2-4 hours, flow sheet
- Hypoglycemia (add D5 to fluids when glucose <250), Hypokalemia, Hyperglycemia, return of DKA, Hyperchloremia (change to ½ NS), and cerebral edema

#### Cerebral Edema

- Mortality up to 50%, 1/3 survivors in vegetative states
- Risk Factors: less than 5 yo, new onset T1DM
- Symptoms: AMS, seizures, pupillary changes
- Pathophysiology: unknown; not associated with IVF
- Treatment: mannitol 1-2 gm/kg IV; consider intubation/decadron/hypertonic saline

# When Are We Done Treating DKA?

- Glucose not reliable. AG better
- pH/HCO3 even better
- Serum beta-hydroxybutyric acid the best

# Type 2 DM: Insulin Resistance

- Who: obesity, increased cholesterol, hypertension, runs in families
- Drugs can cause glucose intolerance (e.g. glucocorticoids, anti-hypertensives)
- High risk for stroke, MI ...
- Sx: polyuria, polydipsia, weight loss, nocturia, blurry vision, yeast infections (esp. males)
- Complication: Hyperosmolar coma
- Tx: oral diabetic medications +/- insulin
  - Exercise, weight loss, lifestyle modification can help control

#### **Diabetes Medications**

#### Insulin

- Many types that all have different onsets, peaks and durations of activity
- Ultra-short acting: Aspart, lispro (take right before meal, onset in 15 min, only last a couple hours)
- Long-acting: Insulin Glargine (24 hour basal state)

#### **Oral Medications**

- Sulfonvlureas
  - Stimulate pancreas to release insulin
  - Can cause hypoglycemia
  - o Glipizide, glyburide
- Biguanides
  - Suppress hepatic gluconeogenesis (cannot cause hypoglycemia!)
  - o Can cause lactic acidosis, GI side effects common
  - Metformin



- Thiazolidenediones (TZDs)
  - Increase sensitivity to insulin
  - Side effects include hepatitis and edema
  - o Actos, Avandia

# Hyperosmolar Coma

- Occurs in patients with T2DM
- Similar precipitants as DKA
- pH is normal and there are essentially no ketoacids
- Severe dehydration (8-12 L) deficit
- Blood glucose very high (>1000 mg/dL)
- Sx: neurologic symptoms due to extreme dehydration from high plasma osmolality (abdominal pain rare, unlike DKA)
- Tx: fluids +/- insulin

# Hypoglycemia

- A complication of both T1DM and T2DM
- Causes: medications, missed meal, renal dysfunction, alcohol (suppresses hepatic
- gluconeogenesis)
- Sx: adrenergic sweaty, shaking, personality changes, confusion, stroke mimic
- Tx: glucose! 1 amp of D50 IV, glucagon IM, or PO juice/candy

#### **Pearls**

- T1DM is due to insulin deficiency and T2DM is due to insulin resistance
- Diabetic ketoacidosis (DKA) treatment includes fluids, electrolytes, insulin, and treating the precipitating factor
- In DKA, check potassium level prior to giving insulin
- Cerebral edema is a rare but important complication of DKA typically in children and is treated with mannitol
- Oral medications used in T2DM have a range of side effect profiles, including sulfonylureas, which can cause hypoglycemia
- Treat hyperosmolar coma patients aggressively with fluids

# Fluid & Electrolyte Disturbances

#### **Basics**

- Body Fluid Composition: Males 60%, Females 50%, Infant 75%, Elderly 45%
- Maintenance fluid calculation = 4/2/1 rule
  - o 4mL/kg for 1st 10kg
  - o 2mL/kg for 2nd 10kg
  - 1mL/kg for each additional kg up to max of 120 mL/hour
  - $\circ$  Ex: 80kg man is 120mL/hr (40 + 20 + 60 = 120mL/hr)

## Fluid States



#### Volume Overload

- Due to excessive fluid or salt intake, CHF, cirrhosis, nephrotic syndrome, steroids, fluid shifts (d/t iatrogenic substances such as albumin, mannitol)
- Sx: peripheral edema, anasarca, ascites, jugular venous distention (JVD), pulmonary vascular congestion, paroxysmal nocturnal dyspnea

#### Dehydration

- Due to GI losses (vomiting/diarrhea), Renal (diuretics), Skin (sweating, burns), third-spacing (pancreatitis, crush injury)
- Sx: dry mucous membranes, poor skin turgor (skin tenting), muscle cramps, dizziness, increased thirst, hypotension, concentrated urine and hematocrit
  - Can lead to electrolyte abnormalities and altered mental status (AMS)

# **Electrolyte Abnormalities**

# Hyponatremia

- Na <135 mEg/L; severe if <125 mEg/L</li>
- Relative excess of water in relation to Na
- Sx: N/V, HA, muscle weakness or cramps; can lead to lethargy, AMS, coma, seizure
- Differentiated based on fluid status:
  - <u>Hypervolemic</u>: CHF, cirrhosis, nephrotic syndrome, sepsis
    - Tx underlying disease, water restriction (50%), diuretics
  - Euvolemic: trauma, SIADH, hypothyroid, adrenal insufficiency (glucocorticoids)
    - Tx underlying disease, water restriction (50%)
  - Hypovolemic: vomiting, diarrhea, third spacing, diuretics, NG tubes
    - Tx with Normal Saline (NS) vs ½NS

#### Pseudohyponatremia

- Falsely lowered sodium
- Causes: hyperglycemia (most common), hyperlipidemia and hyperproteinemia
- Correction factor for hyperglycemia: add 1.6 to measured Na for every 100 over 100 mg/dL of glucose

#### Sodium Correction

- Asymptomatic + Na 120-140 mEg/L = NO EMERGENT TX
- Goal correction rate = 0.5 mEg/hr
  - \*Rapid correction can result in Central Pontine Myelinolysis (CPM), a demyelinating process not limited to the pons (can be catastrophic)
- \*Hypertonic saline reserved for Na <120 mEq/L + Coma/AMS/Active sz</li>
  - o 100cc 3% saline over 10 min followed by another 100cc over 50 min if needed

#### **Hypernatremia**

- Due to unreplaced water losses, decreased water intake, or high Na intake
- Elderly patients particularly susceptible



- Sx: dehydration, lethargy, poor skin turgor, weakness, AMS
- Tx: calculate free water deficit = 0.6 x wt (kg) x [(measured Na/140)-1]
  - Provide NS if hypovolemic until euvolemic, then change to D5W vs D5½NS
  - Give 50% over first 12hrs, remainder over next 24hrs
  - Goal correction rate = 1-2 mEg/hr
  - Rapid correction can result in Cerebral Edema

# Hyperkalemia

- Most common cause: pseudohyperkalemia (lab or lab draw error) → re-send lab!
- Other causes: renal failure, metabolic acidosis, cell death, meds (succinylcholine, calcium channel blockers, beta-blockers)
- 3 categories of treatment:
  - K+ Shifters: D50 and Insulin, inhaled beta-agonist, 2 amps HCO3
  - K+ Excreters: Furosemide, Kayexalate, Hemodialysis
  - Cardioprotection: Calcium Chloride only if wide QRS
    - EKG Changes: peaked T waves → PR prolonged → lose P wave → wide QRS → Vtach/VFib

#### Hypokalemia

- Due to GI losses (vomiting, diarrhea), diuretic use, poor nutrition
- Sx: cramps, weakness, arrhythmias, respiratory muscle weakness, GI muscle weakness
- EKG changes: can be almost any rhythm, *U waves are specific*
- Treatment
  - IV K+ replacement 10-20 mEq/hr (causes pain if faster)
  - Consider oral K+ (difficult to give too much)
  - o Give 100mEq K+ for every 0.3 below normal serum potassium level
  - \*Supplement with Magnesium

#### Hypercalcemia

- Most commonly due to hyperparathyroid, also in malignancy of breast, bone, lung (osteolytic mets, PTH-related protein, Vitamin D analog production)
- Sx: Bones (bone pain), Stones (renal, biliary), Groans (abd pain, N/V), Thrones (polyuria), Psychic overtones (depression, anxiety, insomnia)
- EKG: short QT
- When to treat
  - Ca <12 = no treatment
  - Ca 12-14 = symptom based
  - Ca >14 = tx immediately
- Treatment
  - Aggressive IVF (rarely fixes problem as sole therapy)
    - 1 L up front then 200cc/hr; keep urine output at 100cc/hr
  - Calcitonin: increases excretion and inhibits osteoclasts (lowers by 1-2 mg/dL max; works in 4-6hr)
  - Bisphosphonates: inhibit osteoclast fxn, more potent, require days to work
  - o Glucocorticoids: renal excretion, decreases intestinal absorption of Calcium

#### **Hypocalcemia**

• Due to hypoparathyroid, Vit D deficiency, hyperphosphatemia, hypomagnesemia (PTH resistance), hypermagnesemia (PTH suppression), meds



- Sx: tetany (peri-oral numbness to spasm), Chvostek's sign (face), Trousseau's sign (BP), seizure, QT prolongation
- Treatment
  - IV Calcium if severe symptoms and Ca < 7.5mg/dL</li>
  - Oral Calcium for mild symptoms and Ca >7.5mg/dL
  - o Give Vit D if deficient
  - Give Magnesium if hypomagnesemic

#### Pearls

- Maintenance fluid: 4/2/1, max of 20
- Hyponatremia: volume problem =  $\frac{2}{3}$  treated with fluid restriction
  - goal of therapy is 0.5mEq/hr to prevent CPM
  - save hypertonic saline for Na < 120 + coma, acute AMS, seizing</li>
- Hypernatremia
  - Calculate free water deficit (1/2 12 hours)
  - o goal of therapy is 1-2 mEq/hr to prevent cerebral edema
- Hyperkalemia: treatment guided by EKG; treat with shifters, excreters, cardioprotectors
- Hypokalemia: U wave on EKG
- Hypercalcemia: bones, stones, groans, moans and psychic overtones; hydration first line of therapy
- Hypocalcemia: Trousseau's and Chvostek's signs

#### The Nutritional Deficiencies

#### Thiamine (Vitamin B1) Deficiency

• Who: chronic alcoholics (poor dietary intake), extreme diets, poor nutrition, dialysis

#### Clinical Manifestations

- Wernicke's Encephalopathy
  - Dx: Triad: altered mental status (most common), ataxia, ocular dysfunction (i.e. nystagmus)
    - complete triad rare
  - Tx: Thiamine 500mg IV, improves in hours; gets better in hours; untreated = coma/death
- Korsakoff's Psychosis late manifestation of Wernicke's
  - o Dx: memory loss (usually short term), irreversible
- "Wet" Beriberi
  - Chronic thiamine deficiency
  - $\circ$  Vasodilation/fistula formation  $\to$  dependent edema/signs of CHF  $\to$  high output failure
  - Tx: Thiamine 100mg IV

#### Niacin (Vitamin B3)

- Who: lack of dietary niacin (leafy greens, fish), carcinoid syndrome
- Pellagra ("Sour skin")
  - The 4 D's: *Diarrhea*, *Dermatitis* (symmetric, scaling, photosensitive),



## **Dementia**, **Death** (eventually)

# **Cobalamin (Vitamin B12)**

- General: in animal products; stored in our liver; must be able to absorb from gut; deficiency takes years
- Who: low GI absorption (Crohn's), inadequate intake (vegans, alcoholics, elderly), meds (*PPI's*), genetic
- Diagnosis
  - Oval macrocytic RBCs/hypersegmented neutrophils; can progress to pancytopenia
  - Labs: low B12 level, serum and bone marrow aspiration
  - \*Neuro symptoms (gradual, symmetric, range from paresthesias to clonus);
    Psychiatric (memory loss, psychosis, depression)
  - \*\*Pernicious Anemia: antibody to intrinsic factor → cannot absorb B12
- Tx: parenteral B12 with taper, high B12 diet

#### Folic Acid

- General: animal products, green veggies (leafy, fruits, grains), fortified foods in US; deficiency takes months
- Who: poor diets, alcoholics, elderly, infants (fed with goat's milk), drugs (\*\*phenytoin)
- Clinical: similar to B12 (megaloblastic anemia) but NO NEURO CHANGES
- Dx: serum folate; tricky to diagnose with serum folate level (affected by diet) → treat clinically
- Tx: Oral folic acid (daily x 1-4 mon)

#### Vitamin D

- General: facilitates calcium absorption from gut
- Who: dark skinned, lack of sunlight, inadequate intake (fish, egg), exclusively breast fed babies
- Presentation depends on age
  - Children: Rickets
    - Bow legs, poor mineralization → stunted growth
  - Adults: Osteomalacia
    - Bone/muscle pain, normal height
- Tx: sunlight, diet supplement, PO Vit D, symptom support (bracing, surgery)

## Vitamin C (Scurvy)

- General: works in collagen formation → rough/bloody skin, gum dz, poor wound healing
- Nutritional deficiency

#### The Vitamin Toxicities

General: Four vitamins cause excess syndromes: A, D, E, K ("remember the attic/ADEK")

#### Vitamin A

- Beta-carotene is provitamin A → excess not toxic → orange skin
- Acute toxicity (large single dose; beware polar bear liver): N/V, vertigo, blurry vision
- Chronic toxicity: ataxia, visual impairment, hair loss



#### Vitamin D

- Excess results in Hypercalcemia
- Presentation: **Bones** (pain), **Stones** (renal/biliary), **Groans** (Abd pain, N/V), **Thrones** (Polyuria or "porcelain throne"), **Psychic Overtones** (Depression, anxiety, insomnia)
- EKG: shortened QT
- Tx: IVF, Bisphosphonates

#### Pearls

- Thiamine/Vitamin B1 deficiency can range from Wernicke's encephalopathy (reversible) and Korsakoff's psychosis (irreversible memory loss) to "wet beriberi" (high output failure)
- Pellagra is caused by Niacin/Vitamin B3 deficiency and consists of the 4D's (Diarrhea, Dermatitis, Dementia, Death)
- Cobalamin/Vitamin B12 and Folic Acid deficiency both present with megaloblastic anemia, but are differentiated by neuro symptoms (Neuro Sx: B12; Non-focal neuro: Folic Acid)
- Vitamin D deficiency can present differently based on age (Kids = rickets, Adults = osteomalacia)
- Vitamin C deficiency causes scurvy (pirates)
- Important vitamin toxicities include Vitamin A (causes vertigo/ataxia) and Vitamin D (causes hypercalcemia)

# **Pituitary and Adrenal Disease**

# The Pituitary

#### **Basics**

- Major hormone control center located in bony sella turcica
- Connected to hypothalamus
- Divided into anterior/posterior sections
- \*\*Hormones nnemonic: GOAT FLAP (letter on each knuckle, and "rock on" 1st fist to show posterior pit hormones)
  - Growth Hormone
  - Oxytocin (posterior)
  - Antidiuretic Hormone (posterior)
  - o **T**SH
  - o **F**SH
  - o LH
  - ACTH
  - Prolactin
- Hormonal feedback loop: pituitary (pit) sends hormones to target organs → target organs release affect hormones → affect hormones feedback on pit to decrease production

# Hypopituitarism



- General: usually hormones from anterior lobe
- Panhypopituitarism = all hormones out
- Causes: mass lesions, bleeds (pit apoplexy), hypothalamic dz, Sheehan's (postpartum)
- Dx: check hormones levels!
  - Labs tests: ACTH (morning serum cortisol), TSH (& free T4),
    Gonadotropins, GH, Prolactin (+/- reliable)
- Tx: Hormone replacement (same tx for all deficiencies)

# **ACTH Deficiency**

- Secondary adrenal insufficiency
- How: low cortisol → low vascular tone
- Sx: malaise, anorexia, weight loss, pale complexion
- Aldosterone (mineralocorticoid) are NORMAL

# **TSH Deficiency**

- Sx: general "slowing" of body → bradycardia, slow DTRs, hair loss, cold intolerance
- Results in low thyroid hormone

# **Gonadotropin Deficiency**

- Women: irregular periods, amenorrhea, decreased libido, vaginal dryness
- Men: decreased libido, erectile dysfunction, testes atrophy

# **GH Deficiency**

- Adults: usually asymptomatic; sx can be fatigue, decreased exercise tolerance, abdominal obesity, decreased muscle mass
- Kids: stunted growth

## **Prolactin Deficiency**

• Inability to lactate postpartum (can be only sx of Sheehan's syndrome)

# **Pituitary Tumors**

- Microadenoma (<1cm) vs macroadenoma (>1cm)
- Presentation: suspect based on mass effect → visual field deficits, HA, hormonal sx
- Dx: imaging (microadenomas harder to see), check all hormone levels
- Tx: transsphenoidal surgery; Gamma knife surgery
  - \*\* If Prolactinoma: medical treatment with Bromocriptine

#### **Prolactinomas**

- Usually microadenomas
- Dx: Prolactin > 200 (level correlates with tumor size)
- MEDICAL MANAGEMENT (Bromocriptine)

#### **ACTH Tumors**

- Cushing's syndrome
- Usually microadenomas
- Tx: first line = surgery, if unsuccessful = medical
- Presentation: weight gain, truncal obesity, buffalo hump, moon face, excess sweating,



#### striae, hirsutism, insomnia

#### **GH Tumors**

- Can be macroadenomas
- Presentation: **HA**, **visual field cuts** (tunnel vision)
- Dx: high GH and Insulin-like GF I (IGF-1)
- Usually recognized later in life ("Andre the Giant" acaromegaly)
- Tx: surgical is first line

# **Adrenal Glands**

- General: located atop kidneys
- Medulla produces epinephrine & norepinephrine
- Cortex produces cortisol, androgens & aldosterone

#### Excess Cortisol

- Etiology
  - **Exogenous** (Glucocorticoid use; most common cause)
  - Secondary (increased ACTH)
  - Primary (increased cortisol production)
- "CUSHING" Mnemonic: Central Obesity/Collagen weakness, Urinary free cortisol elevated, Striae, HTN/hyperglycemia/hirsutism, latrogenic, Neoplasms, Glucose Intolerance

# Adrenal Insufficiency

- Etiologies
  - Primary (Addison's, Congenital Adrenal Hyperplasia)
  - Secondary (pituitary, decreased ACTH)
  - Tertiary (hypothalamic dz, decreased corticotropin releasing factor)
- Presentations
  - Primary
    - Acute: Shock, Abdominal Pain, Fever (atypical; look for infection),
      Hypoglycemia, Hyperpigmentation (buccal)
    - Chronic: fatigue, weight loss
  - Secondary/Tertiary: Hyponatremia, Hypoglycemia (more common); no hyperpigmentation (no elevated ACTH); less hypotension; less common: hypotension, GI symptoms; NO hyperpigmentation
- Tx: Aggressive supportive care, IVF, Glucocorticoids, Vasopressors

#### Adrenal Cortex Tumors

 General: most are benign (adenomas); usually incidental finding; 15% functional → Cushing's like syndrome

## Adrenal Medulla Tumors

- Neuroblastoma: Pediatric (2 years)
  - Presentation: mass in abdomen, HTN
  - Produces catecholamines
- Pheochromocytoma: all ages, part of MEN syndrome



- o Presentation: High blood pressure, headache, palpitations
- o Dx: 24 hr urinary catecholamine metabolites

#### Pearls

- Remember the Pituitary hormones = GOATFLAP
- Pituitary tumors can present with only visual symptoms, but when you suspect it check imaging and all hormone levels
- Prolactinomas are the only pituitary tumors treated medically; all others are initially treated surgically
- Adrenal excess causes Cushing's, regardless of the cause
- Adrenal Insufficiency is always treated supportively (IVFs, glucocorticoids, vasopressors)
- Remember the adrenal medulla tumors: Neuroblastoma (kid, abdominal mass, HTN) and Pheochromocytoma (BP, HA, palpitations)

# **Thyroid Disorders & Parathyroid Disease**

#### General

- TSH acts on thyroid gland to release inactive form of T4 (95%), and T3 (5%)
- In blood, 99% of thyroid hormone is bound to thyroid binding globulin (TBG), prealbumin and albumin
- T4 is converted to T3 in peripheral tissues
- Feedback loop: hypothalamus releases TRH → stimulates pituitary to release TSH → stimulates thyroid gland to release thyroid hormone → feedback when enough

#### T3 Function

- Metabolism: increases glucose absorption from GI tract; catabolic effect on muscle mass
- Cardiovascular and respiratory: increases CO and RR; increases catecholamine levels
- BMR: increases oxygen consumption

# Hyperthyroidism

- **Thyrotoxicosis**: any condition that results in excessive thyroid hormone (includes entire spectrum of disease: Graves, toxic goiter, thyroiditis, med ingestion)
- **Hyperthyroidism**: hyper-functioning of thyroid gland itself
  - Graves in young
  - Toxic nodular goiter in elderly
- Causes
  - Graves (autoimmune, F>M)
  - Nodular goiter (elderly)
  - lodine-induced (excessive intake, amiodarone use)
  - Thyroiditis
- Symptoms: anxiety, emotional lability, weight loss, weakness, tremor, palpitations, heat intolerance, perspiration, oligomenorrhea
- Exam: hyperactivity, rapid speech, warm moist skin, thin hair, tachycardia/A-fib, tremor, hyperreflexia, goiter, exophthalmos
  - o Graves: proptosis, pre-tibial myxedema, lid lag



- Thyroid size does not correlate to disease severity
- Labs: Low TSH, increased free T3/T4
- Treatment: 4-step approach
  - Anti-hormone Therapy
    - Propylthiouracil (PTU)/Methimazole: 1st med to give; blocks new hormone synthesis
    - Iodides: SSKI; 2nd med, *must be given after PTU*; blocks release of preformed hormone
  - Blunt the Systemic Effects
    - Beta-blocker: often propranolol → decreases HR, BP, cardiac work
    - Glucocorticoids: prevent peripheral conversion of T4 to T3
  - Treat Precipitant
  - Prevent Decompensation
    - Aggressive IV fluids, w/ dextrose containing solution
    - Tylenol (avoid NSAIDs)
    - Cool w/ blankets or ice packs

# **Hypothyroidism**

- More common than hyperthyroidism
- Causes: almost all primary (rarely d/t lack of TSH)
  - Painless
    - Hashimoto's: almost all cases in US; autoimmune; chronic
    - Medication-related
    - Postpartum
    - lodine deficiency: most common cause worldwide
  - Painful
    - Subacute thyroiditis: de Quervain's; pain may radiate to ear; viral and self-limited
    - Infectious: bacterial; fever, chills, dysphagia; antibiotics
- Symptoms: fatigue, somnolence, "feel slow", weight gain, cold intolerance, pale/cool/dry skin, coarse hair, brittle nails, constipation
- Exam: periorbital edema, bradycardia and decreased cardiac output, low body temps, slow DTRs, hypertension, non-pitting edema
- Labs: high TSH, low free T3/T4, anemia
- Treatment
  - Thyroid hormone replacement (Synthroid = T4: lower threshold to start if elderly or pregnant)
  - lodine

# Thyroid Nodules

- Much more common than hormonal disorders
- More common in women
- Smoking is a risk factor
- Most are asymptomatic
- Refer for FNA
- Less than 5% are cancerous, most cancers are papillary type (non-aggressive)

# **Thyroid Tumors**



- Very common CA but low mortality
- Starts as a nodule
- On the rise due to radiation
- Many types (papillary, follicular)
- Treatment
  - Surgery: thyroidectomy vs lobectomy
  - o Radioactive Iodine-131: may occur post surgery for residual tissue
  - All will need thyroid supplementation

#### Pearls

- Thyrotoxicosis is any condition resulting from excessive thyroid hormone, regardless of cause (versus hyperthyroidism which is only hyper-functioning of the gland itself)
- Treatment of hyperthyroidism should be a 4-step approach: 1) give anti-hormone therapy, 2) blunt the systemic effects, 3) treat the precipitant, and 4) prevent decompensation
- Hyperthyroid: tremor, tachy, sweaty, weight loss
- Thyroid storm is a real emergency
- Hypothyroidism usually either Hashimoto's or iatrogenic
- Hypothyroid: cool, dry, lethargic, weight gain

# Hyperparathyroidism

- General
  - Overactive parathyroid glands
  - Females > males
  - o PTH hormone increases Ca absorption
  - Elevated calcium on routine blood tests
  - Diagnose by elevated PTH
- Symptoms
  - Bones (boney pain)
  - Stones (renal, biliary)
  - Groans (abdominal pain, nausea/vomiting)
  - Thrones ("porcelain throne," i.e. polyuria)
  - Psychic overtones (depression, anxiety, insomnia)
  - Short QT on EKG
- Treatment
  - Most pts will need surgery, but for emergency physicians the main point is to decrease Ca
  - Need for tx depends on Ca level, so know these numbers
    - <12 never treat</p>
    - 12-14 treat if symptomatic
    - >14 treat immediately even if asymptomatic
  - Initial treatment: hydration
    - Aggressive IVF: 1L normal saline up front, then 200cc/hr (goal is urine output >100cc/hr); rarely fixes problem as sole therapy
  - +/- diuretics
  - Later treatment that will actually fix the problem
    - Calcitonin: increases renal Ca excretion and inhibits osteoclasts; lowers
      Ca by 1-2mg/dL in 4-6hr; given SQ or IM



- Bisphosphonates: directly inhibit osteoclast function; very potent, but takes a few days to work
- Steroids: increase urinary excretion and decreases GI uptake

# Hypoparathyroidism

- General
  - Not enough PTH
  - Blood calcium levels fall
  - Blood phosphorus levels rise
- Etiology
  - Often a result of thyroid surgery
  - DiGeorge syndrome: born without parathyroid glands
- Symptoms
  - Lethargy, muscle cramps, tetany, brittle nails, weakened tooth enamel, tingling lips/fingers/toes, seizures
  - Pathognomonic signs: Chvostek sign (tapping facial nerve causes facial spasm), Trousseau sign (extremity spasm distal to BP cuff)
- Treatment: replace Ca, vitamin D

#### Pearls

- Think of parathyroid disease in terms of CALCIUM → Hyperparathyroid causes Hypercalcemia; Hypoparathyroid causes Hypocalcemia
- Aggressive IVF in early tx of hyperparathyroidism, especially with Calcium >14mg/dL