

Hematology

Transfusion Reactions

MINOR

Febrile Non-Hemolytic Transfusion Reaction

- During or up to 4 hours after transfusion
- Incidence: 1:500
- Low grade temp, otherwise asymptomatic
- Cytokine-mediated
- Higher in old blood products and platelets; lower in leukocyte-reduced products
- Treatment: Acetaminophen; hold transfusion for 30 mins (then likely restart)

Simple Allergic (Urticarial) Reaction

- During or a few hours after transfusion
- Incidence: 1:3-1:300
- Only transfusion reaction where if mild you can continue transfusion without stopping
- Treatment: Diphenhydramine
- Premedicate if known history of same

CRITICAL

Acute Hemolytic Transfusion Reaction

- During transfusion or up to 4 hours after transfusion
- True EMERGENCY: high grade fever, flank pain, hematuria, SICK/SHOCKY
- Diagnosis: pink plasma, positive Coombs test (looks for anti-human antibodies)
- Incidence: 1:38,000-1:70,000
- Mortality: 1:30
- Usually due to ABO incompatibility
- Management: STOP transfusion; recheck patient/blood; notify blood bank; send Coombs,
 Type and Cross, Chemistry and Hgb
- Can lead to DIC/shock/ARF
- Treatment: supportive, IVF (keep urine output 100-200cc/hr), treat hyperkalemia if present

Sepsis

- Usually in first hour
- Very rare
- Management: stop transfusion and notify blood bank; culture blood (recipient and donor)
- Broad spectrum reaction

Severe Allergic (Anaphylactic) Reaction

- Usually occurs right at the start but can be delayed up to 4 hours
- Incidence: 1:20,000-1:50,000
- Shock, hypotension, angioedema, respiratory distress
- Normal CXR
- Treatment: stop transfusion; supportive; epinephrine

Transfusion Related Acute Lung Injury (TRALI)

- Occurs during or up to 6 hours after transfusion
- Incidence: unknown but estimated 1:5,000 1:150,000
- Cause: unknown; leading theory involves HLA antibodies causing inflammatory response in pulmonary vasculature
 - More common in female donors and reduced incidence in females screened for HLA antibodies
- "Two-Hit" Theory: patients with underlying systemic inflammation more likely
 - SIRS/Sepsis
 - o Trauma
 - Massive Transfusion
- Diagnosis: Non-cardiogenic pulmonary edema (tachypnea, tachycardia, hypotension, frothy pink sputum, fever)
 - o CXR reveals pulmonary edema
- Treatment: stop transfusion; supportive; NO furosemide

Transfusion-Associated Circulatory Overload (TACO)

- Occurs during or a few hours after transfusion
- Incidence variable but increased in patients with CHF
- Symptoms similar to TRALI
- Distinguishing Features
 - Hypertension
 - Symptoms of overload: increased jugular venous pressure, increased blood pressure, and increased BNP
- Treatment
 - Stop transfusion, supportive, furosemide

**If a patient receiving a blood transfusion begins having trouble breathing and looks uncomfortable it is due to one of the following: Severe Allergic (Anaphylactic) Reaction, Transfusion Related Acute Lung Injury (TRALI) or Transfusion-Associated Circulatory Overload (TACO).

Premedicate?

- Pros: eliminates minor reactions, patient comfort
- Cons: masks major reactions, delays treatment
- Studies conclude no difference in transfusion reactions

Pearls

- Suspect acute transfusion? Stop the transfusion, check the blood, and call the blood bank. If severe, get labs (especially Coombs).
- Symptom based diagnosis is critical!
- Low-grade fever → Febrile Non-Hemolytic Transfusion Reaction → antipyretics
- Isolated urticaria → Simple Allergic (Urticarial) Reaction → antihistamines
- High Fever/Shock → Acute Hemolytic Transfusion Reaction or Sepsis → antipyretics, vasopressors, fluids, antibiotics.
- Respiratory Distress + Hypertension → TACO → furosemide (like CHF)
- Respiratory Distress + Hypotension → TRALI → pulm edema, support, no furosemide
- Respiratory Distress + Anaphylaxis (clear CXR) → epinephrine, steroids, vasopressors, airway.

Coagulopathy

Coagulation: 3 parts

- 1. Vessel constriction
- 2. Primary hemostasis
 - a. Injury to the blood vessel wall \rightarrow endothelial cell goes away \rightarrow
 - b. Von willebrand factor is exposed on subendothelium and platelets stick to it
 - c. Fibrinogen attaches to platelets \rightarrow more platelets attach to fibrinogen \rightarrow primary platelet plug
- 3. Secondary hemostasis (in a nutshell)
 - a. Intrinsic and extrinsic pathways
 - b. Prothrombin is converted to thrombin
 - c. Fibrinogen is converted to fibrin and results in a stable fibrin clot

Fibrinolysis (clot breakdown)

- Key players: Anti-thrombin III, proteins C & S, mainly plasminogen activation, fibrin breakdown
- How it happens: tissue plasminogen activator (tPA) released from endothelial cells → converts plasminogen to plasmin → breaks down fibrin clots → fibrin degradation products (think D-Dimer)

Coagulopathy Clues

 Spontaneous bleeding, Bleeding gums, Bleeding out of proportion to injury Menometrorrhagia, Delayed bleeding/bruising, Umbilical stump bleeding, Post-procedure bleeding, Easy bruising/petechiae, Joint/deep tissue bleeding, Hematuria, Epistaxis, Family History

• Site of Bleeding: Mucocutaneous vs Joints/potential spaces vs Both

Hemostatic Disorders - Inherited

Hemophilias

General

- 2 Types
 - Type A: Factor VIII deficiency; 85% of cases
 - Type B: Factor IX deficiency; "Christmas disease"
 - o Both types X-linked recessive and clinically indistinguishable
 - Up to 30% will have no family history
- Clinical Presentation
 - o Bleeding red flags pain
 - Hallmark symptom: hemarthroses
 - o Pain
- What will kill your patient?
 - Life-threatening hematomas: airway, compartment syndrome, retroperitoneal bleeds
 - o CNS bleeds

Workup

- Prolonged PTT (may be falsely normal if factor activity is >30%)
- Factor activity levels are definitive test
- Grading based on factor activity level as a % of normal (13:00)
 - Mild: 6-60%Moderate: 1-5%Severe: <1%

Treatment

- Recombinant factors
- Amount of factor depends on severity of bleed
- *Assume a starting factor level of 0, replace FVIII vs FIX based on type of hemophilia

Type of Bleed	Factor Level Required	Initial Dose FVIII/FIX (U/kg)
Minor: Hemarthroses, hematuria	20-30% 12.5/25	
Moderate: Epistaxis, GI, dental	50%	25/50
Severe: CNS, retroperitoneal	75-100%	50/100

- Rule of Thumb
 - Factor VIII = "V"
 - FVIII raises activity 2% for every U/kg
 - o Factor IX = "1"
 - FIX raises activity 1% for every U/kg
- Alternative Treatments (if factor VIII not available)
 - o **FFP**: equivalent to 1U of FVIII per 1mL FFP
 - **Cryoprecipitate**: equivalent to 100U of FVIII per bag (also rich in vWF)
 - DDAVP: increases FVIII activity 2-3 times; no free FVIII but causes release of extra vWF, which carries FVIII
 - DDAVP dosing: 0.3mcg/kg IV/SQ; 150mcg nasal spray if <50kg; 300mcg nasal spray if >50kg

Von Willebrand's Disease

Basics

- Most common inherited bleeding disorder (1% of population)
- Varied heritability → can be autosomal dominant or recessive
- vWF: promotes platelet adhesion to collagen; causes platelet activation; protects factor VIII
 - In primary hemostasis, attaches subendothelium to platelets by glycoprotein lb receptor
 - In secondary hemostasis, protects FVIII from degradation delivers FVIII to site of injury
- Von Willebrand's disease can be a quantitative or qualitative defect in vWF and is classified by type

Туре	Occurrence	Defect & Inheritance Pattern
1	70-80%	Decreased vWF / Autosomal dominant
2	10-15%	Non-functional vWF / Autosomal dominant
3	<10%	Complete Lack of vWF / Autosomal recessive ** ddAVP will not work for this type

Clinical

- Platelet Dysfunction
- Epistaxis, prolonged bleeding from lacs, gingival bleeding, hematomas/hemarthrosis (type 3), easy bruising, heavy menses

Laboratory Evaluation

• Platelet count: Normal (deficiency in platelet function NOT number)

- Bleeding time: Prolonged
- PT: Normal
- PTT: Normal/Elevated
- vWF level: Normal/Decreased (depending on type)
- vWF activity: Decreased

Treatment

- DDAVP (desmopressin acetate) causes release of more vWF
- Non-recombinant FVIII (i.e. NOT synthetic)
- Cryoprecipitate
- *No FFP (very little vWF)
- Antifibrinolytics: prevent conversion of plasminogen to plasmin inhibiting breakdown of clots (2nd or 3rd line)
 - ο ε amino-caproic acid (Amicar): 5gm IV over 1 hour, then 1gm/hr gtt
 - Tranexamic acid: 10mg/kg IV q6--8h
- Estrogens: increase vWF and FVIII; can use OCPs chronically, but mainly used IV for an acute bleed
- Topicals: Surgiseal, thrombin spray or powder, fibrin glue

Pearls

- Coagulation hemostasis: 1) vessel constriction; 2) primary hemostasis (platelet plug); 3) secondary hemostasis (fibrin clot)
- Hemophilias are x-linked: **hemarthroses =** hallmark symptom
- Hemophilia A (factor VIII) more common (85% cases) than Hemophilia B (Factor IX)
- CNS bleeds kill hemophilia patients
- Hemophilia best treated with factor
- Factor VIII = "V" = 2 (FVIII raises activity 2% for every U/kg)
- Factor IX = "I" = 1 (FIX raises activity 1% for every U/kg)
- Backup factor replacement for hemophilia patients include DDAVP (factor VIII), fresh frozen plasma, and cryoprecipitate
- Von Willebrand's Disease (vWD) is most common bleeding disorder; responds well to topical tx; can tx with recombinant vWF, DDAVP, or cryoprecipitate, but NO FFP

Hemostatic Disorders - latrogenic

Heparin

- Mechanism of Action: binds and activates anti-thrombin III → completely inactivates factor Xa and thrombin
 - Half life of 30--150 minutes
 - Monitor with PTT
- Bleeding?
 - Stop heparin
 - Think about anemia/thrombocytopenia and whether to transfuse

- Consider protamine
- Reversal Agent: Protamine
 - Actually an anticoagulant, but binds up heparin and neither can work
 - Dose: 1mg protamine for every 100U heparin given in previous 4 hours
 - max 50mg
 - Give SLOWLY to avoid anaphylactoid reaction

LMWH (Enoxaparin)

- Mechanism of Action: also binds to anti-thrombin III, but the resultant complex inactivates only Xa (NOT thrombin)
 - Half life is 3--4 hours
 - Monitor with Xa levels, not PTT
- Reversal: also protamine! But ...
 - Only reverses about 60% of function
 - Dose depends on timing after enoxaparin given and amount given
 - Max is 50mg
 - Give slowly to avoid anaphylactoid reaction

Hours post lovenox	Dose
<8	1mg:1mg
8-12	1mg: 0.5mg
>12	none

Coumadin (sodium warfarin)

- Mechanism of Action: inhibits vitamin K dependent clotting factors (II, VII, IX, and X), and proteins C and S
 - Half life of 36 hours
 - Monitor with INR

Reversal

- FFP: contains all coagulation factors/proteins present in the initial unit of blood
- Vitamin K: coagulation factor substrate; given PO/SQ/IV; takes >24 hours for full effect (time to remake factors)
- Prothrombin complex concentrate (PCC): derived from human plasma and rich in II, VII, IX, X
 - Works in <30 min
 - Minimal risk of thrombotic complications
 - Dose 25-50 U/kg IV
 - Effective, quick, but not FDA approved
- When to reverse?
 - If INR <5, no bleeding → skip next dose of coumadin
 - If INR >5 but <9, no bleeding → skip 1 or 2 doses, can give vitamin K (up to 5mg PO) if increased bleeding risk, follow up with PMD
 - o If INR > 9, no bleeding → hold warfarin until therapeutic; give vitamin K 5-10mg

PO

- \circ Any serious bleeding at any INR \rightarrow hold warfarin, give vitamin K 5-10mg IV, and give FFP or PCC
- Life threatening bleeding → hold warfarin, give vitamin K 5-10mg IV, AND PCC or factor VIIa
- Reversal Pros and Cons
 - These patients are on anti-coagulation for a reason
 - Chance of thrombosis
 - High risk vs low risk
 - High risk patients for reversal: patients with mechanical valves, or defective native valves + afib
 - Low risk patients: DVT and a-fib with normal valves

Tissue Plasminogen Activator (tPA)

- Mechanism of Action: converts plasminogen to plasmin → clot breakdown
- Bleeding?
 - Give everything!
 - o Transfuse blood, 10u cryo, 2-4u FFP, 10u platelets
 - PCC, Factor VIIa, ε amino-caproic acid (Amicar), Tranexamic acid

Clopidogrel (Plavix)

- Oral antiplatelet agent
- Mechanism of Action: prodrug converted by liver; blocks glycoprotein IIb/IIIa → prevents cross-linking of platelets by fibrin
- Can cause bleeding and TTP
- Reversal: nothing really; can give platelets

Dabigatran (Pradaxa)

- Mechanism: direct thrombin inhibitor
- RE-LY trial showed slightly better stroke rate but more patients withdrew from side effects related to the drug
- **Associated with GI bleeds
- Reversal: nothing; platelets won't work; it **is dialyzable**; can try activating thrombin with PCC, FFP, cryo

Xabans (apixaban, rivaroxaban)

- Mechanism: Oral factor Xa inhibitor (like LMWH)
- Studies show non-inferiority to LMWH but not studied vs warfarin
- Also approved for non-valvular a-fib and post-op DVT prevention
- Reversal: in progress; can try thrombin activation as with pradaxa; cannot be dialyzed

Pearls

- Reverse heparin/LMWH with protamine (give slowly)
- Warfarin reversal → if not bleeding, oral vitamin K; if bleeding, give fresh frozen

- plasma/prothrombin complex concentrate + IV vitamin K
- Give tPA bleeders everything you can think of
- Plavix reversal → give platelets
- Direct thrombin inhibitors reversal → thrombin activators + dialysis
- Xabans reversal → thrombin activators

Blood Disorders

Multiple Myeloma

- Definition: monoclonal immunoglobulin produced by single clone of neoplastic cells → clone proliferates in bone marrow
- Sx: elderly with chronic bony/back pain, lytic lesions on xrays
- Associated Symptoms
 - Anemia (bone marrow infiltration)
 - Renal disease ("cast nephropathy" "myeloma kidney")
 - Hypercalcemia (can result in LOW anion gap)
- Diagnosis
 - Serum and urine for monoclonal protein
 - Abnormal SPEP & UPEP (electrophoresis to ID protein);
 Bence-Jones Protein (in urine)
 - +/- skeletal survey
 - Rouleaux formation on blood smear
 - Elevated ESR

Lymphoma

- Definition: cancer of lymphocytes; presents as a solid tumor (static tumor)
- Two Categories: Hodgkins Lymphoma, Non-Hodgkins Lymphoma (NHL)
- B-Symptoms (if present, more aggressive): Fever, Night Sweats, Lymphadenopathy
- Dx: lymph node biopsy

Non-Hodgkins Lymphoma (NHL)

- Follicular Lymphoma (40% of lymphomas in adults)
 - **Indolent** = often wide spread at presentation
 - Not curable, but slow growing
 - Who: older adults
 - Can transform to aggressive form with high mortality (patient has B symptoms)
- **Diffuse Large B cell Lymphoma** (40-50% of lymphomas in adults)
 - Aggressive = symptomatic
 - About half are curable
 - Rapidly spreads outside of lymph nodes
 - Who: all ages, more common in older adults

Hodgkins Lymphoma

- Less common than NHL
- Who: male, bimodal age distribution (age 20-40 and >55), strong family history, relation to viral infection
- Rapid treatment = high cure rates
- Dx: B symptoms + **Local spread** to contiguous LN (different from NHL)
- Pathology: Reed-Sternberg cell on biopsy

Leukemia

- Definition: cancer of the blood or bone marrow neoplastic proliferation of hematopoietic or lymphoid cells
- Dx: bone marrow aspiration

Types: Acute vs Chronic and Lymphocytic vs Myelogenous

- Acute: CHILDREN; rapid increase in blasts → crowds out other cells in marrow → blasts spill into blood
- Chronic: ELDERLY; slow onset, progress over yrs; mature abnormal WBCs; not emergency
- Lymphocytic: cancer of cells that become lymphocytes (T or B cells;mostly B cells)
- Myelogenous: cancer of cells that become RBCs, platelets, other WBCs

Putting this together we get 4 main types of leukemia

- Acute Lymphocytic Leukemia (ALL): bony pain, lymphadenopathy, spleno/hepatomegaly, fatigue (anemia), bleeding/petechiae (thrombocytopenia) and infections (functional immunosuppression); blasts
- Acute Myelogenous Leukemia (AML): same as ALL except NO lymphadenopathy,
 MILD splenomegaly; infiltration into gums; Auer rods on smear; blasts
- Chronic Lymphocytic Leukemia (CLL): adults (> 50yrs); slow onset; usually incidental (elevated WBC for no good reason); advanced disease = swollen LN/spleen, anemia and infections
- Chronic Myelogenous Leukemia (CML): similar to CLL + high platelets

Leukemia/Lymphoma Emergencies

Leukostasis

- Real emergency!
- WBC > 100K, usually AML or CML in blast crisis
- Viscous blood plugs circulation
- Symptoms: severe hypoxia, headache, dizziness, visual changes, AMS → SICK!
- Tx: induction chemotherapy
 - Temporize with leukapheresis
 - Allopurinol (prevent TLS), hydroxyurea

Tumor Lysis Syndrome

- Death of many CA cells at once → massive release of intracellular contents → metabolic derangements → final pathway is renal failure
- Who: aggressive heme malignancies (high-grade lymphomas Burkitt; ALL), large solid

tumor burden (breast), tumors with high proliferative rates

- Post induction therapy (1-5 days)
- Radiation therapy
- New cancer diagnosis
- High sensitivity to treatment
- Symptoms: non-specific and related to the electrolyte issue
 - Hyperuricemia, hyperphosphatemia, hyperkalemia, hypocalcemia → renal insufficiency
- Lab: Uric acid level, potassium, phosphorous, calcium
- Clinical: laboratory TLS plus one of the following: elevated creatinine, cardiac arrhythmia, seizure, sudden death
- Tx: aggressive fluid resuscitation, treat electrolyte abnormalities, prevent ARF, cardiac monitoring, labs every 6 hours
 - Hyperuricemia (suspect TLS = send uric acid level; uric acid crystals obstruct renal tubules → renal failure)
 - Allopurinol blocks metabolism to uric acid; oral or IV; slow onset; does not work on existing uric acid crystals
 - Rasburicase oxidizes uric acid to water soluble form; IV only; rapid onset; works on existing uric acid; save for sicker patients
 - Hyperphosphatemia
 - Phosphate binders (i.e. aluminum hydroxide)
 - Dialysis
 - Hyperkalemia
 - Potassium shifters (Insulin/glucose, albuterol, bicarb)
 - Potassium excreters (lasix, kayexalate, dialysis)
 - Cardio-protection if wide QRS (calcium)
 - Hypocalcemia (secondary to high phosphate levels)
 - Do not treat until phosphate levels normal
 - Only treat if symptomatic (seizure, heart failure, long QT, syncope)
 - Calcium gluconate 50-200mg IV

Pearls

- Multiple myeloma: Chronic Bony pain, SPEP, UPEP, Bence Jones, Rouleaux formation, Low Anion Gap.
- Lymphoma: Hodgkins vs NHL
- Follicular NHL = indolent > Large B cell; NHL = Aggressive
- Hodgkins Lymphoma: Reed Sternberg Cell, local spread
- Leukemia: 4 types: AML (auer rods, gums), ALL, CML, CLL
- Leukostasis → sludging → hypoxia + neuro + sick → leukapheresis + induction chemo
- TLS: electrolyte and metabolic abn → renal failure. Uric acid level. tx with IVF, tx electrolyte abn. Allopurinol and Rasburicase.

Platelet Disorders - Thrombocytopenia

Idiopathic Thrombocytopenic Purpura (ITP)

- Relatively rare
- Isolated thrombocytopenia, other labs normal; patient well appearing
- 2 forms: childhood and adult
 - Childhood form: acute, self limiting, 2-3 weeks post immunization or infection
 - Adult form: insidious, chronic, no preceding illness
- Pathophysiology: impaired platelet production; T cell mediated destruction, B cell clone antibodies, splenic clearance of IgG coated platelets
- Treatment
 - 1st line: corticosteroids (2/3 of patients will respond)
 - IVIG: works fast but short lived; expensive
 - Platelets: temporary hemostatic support; will be destroyed; use in critically ill patients
 - Splenectomy
 - RhoGAM: induces mild hemolysis in Rh+ patients → decreases macrophage activity, spares IgG coated platelets from splenic destruction
 - o Chemotherapeutic agents: Rituximab
 - New drugs: Eltrombopag and Romiplostim (stimulate platelet production; lifelong)

Thrombotic Thrombocytopenic Purpura (TTP)

- Pathophysiology: long platelet chains clog blood vessels and prevent RBC passage
- "The Evil Pentad": low platelets, anemia, fever, acute renal failure, neuro symptoms (fever and renal failure rare in reality)
- Presentation: symptoms wax and wane (b/c cause of TTP is platelet plugs that are not very stable)
 - o brain, heart, adrenal gland, kidney, pancreas
- Consider this diagnosis if patient has thrombocytopenia, MAHA, +/- CNS, no other obvious cause (don't wait for full pentad!)
- Risk factors: obese, African-American, female, HIV, SLE, drugs (Quinine, Clopidogrel, Ticlopidine)
- Rare disease but high mortality if missed and low mortality if treated
- Laboratory Abnormalities: thrombocytopenia, anemia, increased unconjugated bilirubin, increased LDH, normal fibrin/fibrinogen, ADAMTS-13 tests, vWF gel electrophoresis, DNA analysis; hematuria
- Treatment
 - Give FFP, PET, immunosuppressants (steroids, chemo agents), splenectomy,
 IVIG, anti-platelet agents, Hematology consult
 - DO NOT give platelets (will worsen emboli; exception in life-threatening ICH)

Hemolytic Uremic Syndrome (HUS)

• Childhood: 6 months - 4 years

- Triad: MAHA, thrombocytopenia, ARF
- 95% of cases have diarrhea
- 80-90% caused by E. Coli 0157:H7 (shiga-like toxin)
 - Endothelial damage → Thrombin generation promoted → Fibrin deposition → Platelet-Fibrin clots
 - Seen in outbreaks
- Risk Factors: history of rare hamburger, petting zoo, unpasteurized fruits/juices, unchlorinated water, daycare, long-term care facility
- Classic presentation: bacteria ingested → 3 days → non-bloody diarrhea → 2 days → painful bloody diarrhea → platelet-fibrin clots → end organ damage (thrombocytopenia, MAHA, ARF)
- Diagnosis: presumptive; stool and urine for shiga toxin
- Laboratory Findings: schistocytes, thrombocytopenia, increased UC bili and LDH, normal fibrin/fibrinogen, negative direct coombs, negative blood cultures for E. Coli
- Treatment: mainly supportive
 - Admission for IVFs, PRBC for HgB <6 or unstable VS, HD/PD for anuria
 - PET for rare severe cases
 - No platelets!
 - o Antibiotics can increase toxin release
 - New drug: Eculizumab

Heparin Induced Thrombocytopenia (HIT)

- Definition: platelets <150K OR >50% drop from baseline
- 1-3% of patients on Heparin; can occur with LMWH (<1%)
- 3 Types ... Type 2 most important (presents 4-14 days after starting Heparin)
- Pathophysiology: autoimmune process that forms plugs
- Clinical manifestations: CLOTS
 - Venous/arterial thrombosis, skin lesions, acute reaction, DIC
 - DVT, PE, adrenal thrombosis, cerebral venous/sinus thrombosis, venous limb gangrene, stroke, MI, skin necrosis, erythematous plaques,
- Diagnosis: 4T's Thrombocytopenia, Time of onset (5-14 days), Thrombosis, no oTher cause
- Laboratory Tests: Heparin-induced platelet aggregation assay, other immunoassays
- Treatment
 - Stop heparin, no platelets, no coumadin (until platelet count normal)
 - Change to direct thrombin inhibitor: Argatroban IV; Dabigatran (pradaxa) PO

DIC

Basics

- Characterized by widespread microvascular thrombosis
 - Consumption of clotting factors and platelets (common)
 - Decreased blood flow to vital organs → organ failure (rare)
- THEY ARE SICK!
- *Not a primary disease, a consequence of one
- Independent predictor of mortality in sepsis and trauma

Pathophysiology

 Massive inflammation → endothelial damage → cytokine release (TNF, IL-6) → impaired anti-coagulation & consumption of clotting factors

Lab Findings

• ↓Platelets, ↑D-Dimer, ↑PT/INR, ↓Fibrinogen

Treatment

- Identify and treat underlying cause
- Give platelets if <10-20K or if risk of bleeding and <50K
- ? low-dose heparin

Key Points

- DIC is not a primary disease
- Shiga Toxin E. Coli can cause HUS via UTI or diarrhea
- You must think of HIT to diagnose it
- Gross hematuria may be a clue to MAHA, and MAHA is enough to suspect TTP
- In TTP, give FFP while waiting for PET
- No platelets for TTP, HUS, HIT

Lab Summary of Thrombocytopenia

Lab-Summary	ITP	TTP	HUS	HIT	DIC
↓Platelets	Yes	Yes	Yes	Yes	Yes
↑PT/INR	No	No	No	+/-	Yes
MAHA	No	Yes	Yes	No	No
NL fibrin/fibrinogen	Yes	Yes	Yes	Yes	No
Big Spleen	No	Yes	No	No	No
"Sick"	No	Yes	+/-	No	Yes
Ok to give Platelets	Yes	No	No	No	Yes
Clots Common	No	No	No	Yes	No

Pearls

- Disseminated Intravascular Coagulopathy (DIC) is not a primary disease, and the patients are sick
- Hemolytic Uremic Syndrome (HUS) may be caused by Shiga-toxin/shigtoxigenic E coli from a diarrheal illness or UTI
- Give a direct thrombin inhibitor in heparin-induced thrombocytopenia (HIT), and stop heparin
- No platelets for thrombotic thrombocytopenic purpura (TTP), hemolytic-uremic syndrome (HUS), or heparin-induced thrombocytopenia (HIT)

Red Blood Cell Disorders - Anemia

Definitions

- Hemoglobin (Hgb): grams of Hgb per 100ml of blood
- Hematocrit (Hct): RBC% in sample of whole blood
- MCV: Mean Corpuscular Volume
 - Macrocytic (>100), Microcytic (<80)
- RDW: RBC Distribution Width
 - Elevated RDW = RBCs of different sizes
- Reticulocyte: immature red blood cell; 1% of all RBCs; last one day in circulation before maturing
- Anemia: decreased oxygen carrying capacity due to decreased RBC mass
 - Males: Hgb <13.5 g/dl, Hct<41%
 - Females: Hgb <12g/dL, Hct <36% (at baseline females have less RBCs)

Remember ...

- Acute blood loss may not drop Hgb and Hct → need time for fluid shifts to occur → serial measurements required
- Special populations
 - Smokers have ↑Hgb and ↑Hct (polycythemia)
 - African Americans have slightly lower than normal RBC count
 - Athletes have higher than normal RBC count
- Pancytopenia?
 - o Anemia, thrombocytopenia, neutropenia
 - DDX: infections (specifically HIV), medications, leukemia

Symptoms of Anemia

- Decreased Oxygenation
 - Dyspnea on exertion/rest, general fatigue, palpitations, altered mental status, CHF/angina/MI
- Hypovolemia
 - Muscle cramps, orthostasis, syncope, shock, death

Causes of Anemia

- Kinetic Approach
 - Bleeding
 - RBC destruction (inherited and acquired conditions)
 - Impaired RBC production (nutrients, marrow suppression, hormones)
- Morphologic Approach
 - o Microcytic: iron deficiency, thalassemia, chronic disease
 - Macrocytic: folate, vitamin B12
 - Normocytic: acute blood loss
 - Need a peripheral smear to differentiate

Microcytic Anemias

Iron Deficiency

• ↓reticulocyte count, ↓ferritin, ↓total iron, ↑TIBC

Thalassemia

- Defective hemoglobin chains
- Alpha (Africa, Mediterranean, Middle East, Asia)
- Beta (India, Mediterranean, South East Asia)
- \(\phi\reticulocyte\) count, **target cells**, normal/\(\phi\retarritin\), normal/\(\phi\retarrit\), normal/\(\phi

Chronic Lead Poisoning

- Headache, abdominal pain, memory loss
- From paint, soil, water
- Burton's line: blue line on gums
- Leads to Basophilic RBC stippling

Normocytic Anemia

Anemia of Chronic Disease

- Variety of causes
- ↓reticulocytes, ↓total iron, ↑TIBC

Macrocytic Anemia

Vitamin B12 Deficiency

• Vit B12 comes from animal products

- Who: Crohns, genetics, proton pump inhibitors, vegan diet
- Neurologic changes
- Hypersegmented neutrophils

Folate Deficiency

- Folate comes from animal products & green, leafy vegetables)
- Alcoholics (impaired absorption and poor nutrition)
- NO neurologic changes
- Hypersegmented neutrophils

Sickle Cell Anemia

- Sickled red blood cells
- Valine for glutamine switch at position 6 in hemoglobin amino acid sequence
- Genetic condition; autosomal recessive
 - Heterozygous: carriers of disease; 8-9% of African Americans; essentially asymptomatic
 - Homozygous = have real disease

Clinical Emergencies of Sickle Cell Disease

VASOOCCLUSIVE CRISES

- Acute Dactylitis: the most common initial manifestation of SCD
 - o 6-18months old (uncommon after age 6)
 - Pain and swelling of feet and hands (d/t RBC production occurring in small bones) → Infarction, not infection
- Bone Pain: in adults, occurs in long bones, back, chest
 - Can see avascular necrosis of femoral/humeral head
 - Most common reason for ED visit
 - Treat with narcotics +/- fluid

Pearls

- 3 large groups of anemias: Microcytic, Normocytic, Macrocytic
- Symptoms of anemia can be separated into: 1) decreased organ oxygenation and 2) hypovolemia
- If pancytopenia is present, think about: 1) Infections (HIV); 2) Medications; 3) Leukemia
- Macrocytic anemias can be differentiated clinically by presence/absence of neurologic symptoms
- Bone pain in sickle cell disease is due to infarction, not infection, and occurs in small bones in children, and long bones in adults

Clinical Emergencies of Sickle Cell Disease

VASOOCCLUSIVE CRISES (con't)

- **Priapism**: low flow state → venous, ischemic
 - Erect painful penis with soft glans
 - Treatment ("Time is Penis" = rapid treatment)
 - Aspiration of corpus cavernosum bilaterally (6 and 9 o'clock)
 - Intra-cavernous phenylephrine
 - Surgical drainage if unsuccessful medical management
- Stroke: CVA in young patients; usually affects large arteries → devastating deficits
 - Management: emergent exchange transfusion
 - Hydroxyurea: increases Fetal hemoglobin (Hgb)
 - Can also see bleeds in older adults due to rupture of vessels at sites of prior infarction

Acute Chest Syndrome

- Clinical: fever, SOB, must see infiltrate on CXR
- High mortality rate!
- Caused by combination of infection, micro-occlusive disease, fat embolism (from bone marrow necrosis → fat emboli to lungs → inflammation → hypoxia → more sickling → more vasoocclusion)
- Management: antibiotics, IVF, analgesia, O2
 - If sick enough, then packed red blood cell (PRBC) transfusion or exchange transfusion

HEMATOLOGIC CRISES

Hemolysis

- SCD RBC lifespan short: 1-2 weeks
- Baseline HGB 8 g/dL (patients compensate and tolerate this level well)
- Any acute process (infx) may drop HGB dramatically

Aplastic Crisis

- Rapid drop in RBCs; most common in pediatric patients; usually self-limiting
- Caused by parvovirus
- Low reticulocyte count
- Transfuse PRBC's for severe symptoms

• Splenic Sequestration

- Occurs in kids (before spleen infarcts)
- Sudden enlargement of spleen with rapid drop in HGB (LUQ pain)
- Management: aggressive IVF and transfusion +/- exchange transfusion

INFECTIOUS CRISES

- More susceptible to encapsulated organisms 2/2 lack of functioning spleen
 - (S. pneumo, H. flu)
 - Meningitis, sepsis, PNA, UTIs, osteomyelitis

Pearls

- Sickle cell disease: there are 3 major types of crises
 - o Vaso-occlusive (dactylitis, bone pain, priapism, stroke, acute chest)
 - Hematologic (more common in children than adults)
 - o Infectious (due to encapsulated organisms)