BLOOD AND BLOOD COMPONENTS

BLOOD BANKING:

- STORAGE IMPAIRS RED CELL FUNCTION
 - Less efficient oxygen delivery
 - \downarrow pH, \downarrow 2,3 DPG → left shift in dissociation curve (i.e. less oxygen delivery for given partial pressure)
 - More spherical/rigid
- Stored with citrate solution as preservative

BLOOD TYPING:

- MAIN TESTS:
 - ABO group
 - Incompatibility results in acute haemolysis
 - o Rh
 - Antibody screen
- UNIVERSAL DONOR = BLOOD TYPE O

MASSIVE TRANSFUSION:

- Defined as transfusion equivalent of patient's blood volume within 24 hours
- CAN RESULT IN:
 - Hypothermia
 - HYPOCALCAEMIA \rightarrow infusion of calcium may be necessary
 - o Dilutional thrombocytopaenia

TRICC TRIAL:

- Demonstrated that transfusion threshold of <70g/L was as safe as <100.
- Those with IHD may benefit from higher threshold
- In those with recent AMI, anaemia was deleterious (aim haematocrit >33%)

BLOOD COMPONENTS:

- PACKED RED CELLS:
 - Given to improve oxygen delivery to tissues at microvascular level
 - One unit raises Hb by 10g/L

ARTIFICIAL OXYGEN CARRIERS:

- Hb-based
- Found to HARM:
 - Cause vasoconstriction (endothelin, NO-scavneging-related)

• FFP:

- Given as part of massive transfusion
- \circ To correct coagulopathy in those actively bleeding or prior to procedure
- Needs to be used within 6 hours of thawing
- Screening tests (INR) do NOT correlate well with clinical risk of bleeding (larger amounts may be needed \rightarrow up to 30mL/kg)
- **PLATELETS:**
 - Infusion indicated prophylactically if level <10

- One "bag" of pooled platelets raises count by 40-60
- Reasonable haemostasis even if level 5

COMPLICATIONS OF TRANSFUSIONS:

- IMMUNE VS NON-IMMUNE
- IMMUNE REACTIONS:
 - ACUTE:
 - Intravascular Haemolytic Transfusion Reaction
 - ABO incompatibility
 - Intravascular destruction of red cells → haemoglobinaemia and haemoglobinuria
 - FEVER, HEADACHE, NAUSEA, VOMITING
 - HYPOTENSION, DIC, ATN
 - TREATMENT:
 - STOP THE TRANSFUSION!
 - Aggressive fluid resus
 - Diuretics to improve UO
 - o Pressors
 - Febrile Transfusion Reaction:
 - MOST COMMON
 - >1C rise without explanation
 - Believed to result from antileukocyte antibodies
 - Warrants leuko-depleted red cells in the future
 - Allergic reaction:
 - From urticaria to anaphylaxis
 - "Washed" red cells in future
 - TRALI:
 - Aka Transfusion-Related Acute Lung Injury
 - Leading cause of transfusion-related mortality
 - Occurs within 6 hours of infusion of any blood product
 - Non-cardiogenic pulmonary oedema
 - Decreased rates from male donors for plasma
 - Treatment = stop transfusion and supportive
 - DELAYED:
 - Extravascular Haemolytic Transfusion Reaction:
 - Non-ABO mediated immune reaction
 - Fever, anaemia and jaundice
 - Rarely oliguria or DIC
 - Transfusion-Associated GVHD:
 - Rare
 - Occur when transfused lymphocytes proliferate and attack the recipient
 - Cell-mediated immunodeficiency is a risk factor
 - Onset 3-30 days \rightarrow fever, diarrhoea, \uparrow LFT, pancytopaenia
 - Treatment is BONE MARROW TRANSPLANT

• NON-IMMUNE REACTIONS:

- ACUTE:
 - Circulatory overload:
 - Especially in chronically anaemic, normovoleamic elderly patients
 - Bacterial contamination:
 - YERSINIA ENTEROCOLITICA → grows well in cool, iron-rich environments
 - Fewer than 1 in one million with PRBC, higher in platelets due to higher storage
 - 60% mortality rates
 - Resuscitation and broad-spectrum antibiotics
 - Other:
 - Hypocalcaemia
 - Hyperkalaemia
 - Acidosis
 - Hypothermia
- CHRONIC:

• Viral transmission:

- Much safer since institution of screening
- HIV/HCV \rightarrow 1 in 2 million
- HBV → 1 in 200,000
- CMV, West Nile virus
 - CMV negative products in stem cell or solid-organ transplant patients receiving blood products