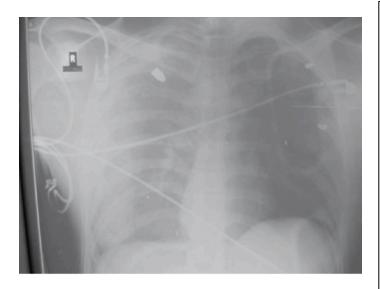

PULMONARY TRAUMA

BLUNT THORACIC INJURIES ACCOUNT FOR 25% OF ALL INJURY-RELATED DEATHS.

IN MOST CASES, THE MECHANISM OF INJURY PREDICTS THE CLINICAL COURSE AND OUTCOME


PRIMARY SURVEY – LIFE-THREATENING INJURIES:

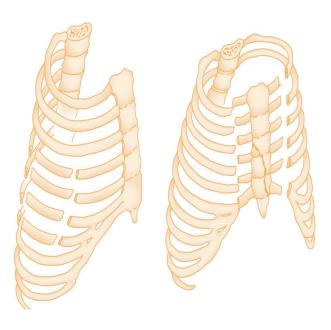
TENSION PNEUMOTHORAX:

- Diagnosis should be made clinical
- CLASSIC PRESENTATION:
 - Distended neck veins
 - Hypotension/hypoperfusion
 - Absent breath sounds
 - Tracheal deviation
- IMMEDIATE NEEDLE DECOMPRESSION → 2nd intercostal space, mid-clavicular line → too medial → internal mammary vessels
 Temporising measure → follow
 - Temporising measure → follow with large bore chest tube

MASSIVE HAEMOTHORAX

- Common causes include injury to intercostal artery, internal mammary artery or injury to lung parenchymal/vasculature
- Each hemithorax can hold ~40% circulating volume
- Life threatening in **3 WAYS**:
 - Acute hypovolaemia, \$\preload and CO
 - Collapsed lung → hypoxia due to alveolar hypoventilation, VQ mismatch and shunting
 - Venacaval compression → ↓ preload

X – RAY



- Tube thoracostomy is both diagnostic and therapeutic
- Evacuation of > 1500mL immediately or 200mL per hour four four hours = thoracotomy
- Other considerations for OT include ↑g haemothorax, persistent hypotension (other sites ruled out), decompensation

OPEN PNEUMOTHORAX:

- Communication between the pleural space and surrounding atmospheric pressure
- SUCKING CHEST WOUND
- Cover wound with three-sided dressing (avoid occlusion) and place tube through separate site, due to risks of infection but also tube will follow tract formed by bullet/knife

FLAIL CHEST:

- Free-floating segment of ribs that occurs when three or more adjacent ribs are fractured at two points
- Assess for segmental PARADOXICAL MOVEMENT greatly increases work of breathing
- Commonly associated with underlying pulmonary contusion 🕅 it is this that causes hypoxia
- Rapid fatigue is common
- Vicious cycle of ↓'g ventilation, ↑'d fatigue and hypoxia develop 🕷 sudden respiratory arrest
- EARLY INTERVENTION AND
 VENTILATROY SUPPORT CRUCIAL
 NIPPV OR INTUBATION

EMERGENCY INTERVENTIONS:

VENTILATORY SUPPORT

 MAINTAINING ADEQUATE OXYGENATION AND VENTILATION IN ACUTE CHEST TRAUMA IS ESSENTIAL

SHOCK MANAGEMENT:

- Consider also alternative sources, as most deaths are due to noncardiothoracic injuries (overall mortality from chest trauma is ~10%)
- Direct efforts to early and rapid restoration of adequate vascular volume and blood pressure
- The goal of trauma resuscitation is to stabilize the intravascular volume sufficiently to provide time to definitively manage haemorrhage
- In previously healthy trauma patients requiring massive transfusion, hypotension for > 30 minutes 1s mortality from 10 to 50%!!
 - In patients > 65, mortality goes to 90% if hypotensive and requiring transfusion

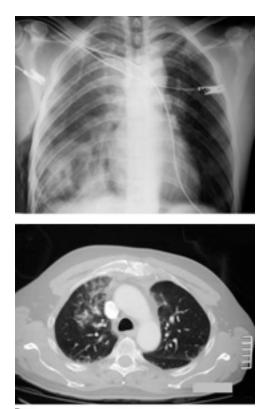
PERMISSIVE HYPOTENSION:

- Aggressive resuscitation and restoration of normal blood pressure can 1 rate of haemorrhage
- Hypotensive resuscitation is WITHOUT DEMONSTRABLE HARM and likely beneficial in some subsets of trauma (esp penetrating)

CHEST TUBE AND THORACOTOMY:

- A large haemothorax or haemopneumothorax should be evacuated as soon as possible to 1 the significant effects on ventilation and venous return
- See specific discussions for methodology
- Loss of vital signs and deterioration after tube placement indicates exsanguinating injury CLAMP THE TUBE AND TRANSFER TO OT ASAP
- If there is continuing air leakage after tube placement is can rapidly collapse the lung and lead to tension is second tube on the affected side
- PROPHYLACTIC ANTIBIOTICS
 - ↓ empyema by 6% and infectious complications by 12%
- Operative intervention is indicated in < 5% of chest trauma patients
- If > 1L evacuated immediately and if drainage of 150-200mL per hour for four hours

CARDIAC ARREST IN THORACIC TRAUMA:


- Arrest is usually due to exsanguination and thus CPR is ineffective due to profound hypovolaemia
- Consider resuscitative thoracotomy X see other chapter for discussion

INJURY TO THE LUNGS:

SUBCUTANEOUS EMPHYSEMA:

- Indicates a more serious injury
- Extrapleural tears in tracheobronchial tree allow air to leak into the mediastinum and soft tissues of the anterior neck
- Presence of localised subcutaneous emphysema in the presence of blunt trauma is usually indicative of TRAUMATIC PNEUMOTHORAX
- TREAT UNDERLYING CAUSE

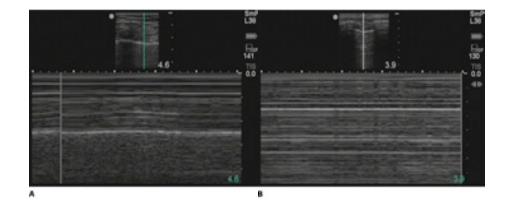
PULMONARY CONTUSION:

- Direct injury to the lung resulting in both haemorrhage and oedema in absence of pulmonary laceration
- Two phases direct injury, then secondary injury after resuscitation, due to capillary hydrostatic pressure fluid into interstitium and alveoli
- Leads to ↑d shunting, resistance to airflow, ↓ elasticity, ↑WOB 🕅 hypoxia/hypercarbia and decompensation
- Areas of opacification within 6 hours of trauma considered diagnostic of contusion, but 70% NOT VISIBLE ON INITIAL RADIOGRAPH
- If contusion involves ≥20% of lung volume 80% risk of ALI
- Mainstay of treatment involves maintaining adequate ventilation. Adequate analgesia crucial and consider invasive ventilation in severe cases (noninjured lung down, high frequency oscillation are options)

8

HAEMOTHORAX:

- Most frequently caused by bleeding from direct lung injury
- Compressing effect of blood within pleural space, along with high concentrations of lung thromboplastin and low pulmonary arterial pressure combine to LIMIT BLEEDING
- · Bleeding from venous origin usually tamponades without intervention
- Severe bleeding from mammary, pulmonary or intercostal vessels require invasive management


- Large haemothorax RESTRICTS VENTILATION AND IMPAIRS VENOUS RETURN
- X-ray not perfect as up to 1L blood may be missed due to layering of blood posteriorly
 - CT has highest sensitivity and specificity, also able to show ongoing arterial bleeding
- Treat with large bore chest tube

PNEUMOTHORAX:

- Any collection of blood or air within the pleural cavity may ↓ vital capacity, ↑intrathoracic pressure, ↓minute ventilation and venous return
- Isolated pneumothorax usually won't cause symptoms until ≥40% of hemithorax involved, if tension has developed or if patient has underlying cardiopulmonary disease
- CXR most common tool in ED, but consider US (see below) mtextbf{M} near 100% sensitive but not specific
- If picture suggests tension 🕅 treat with needle decompression and tube thoracostomy.
- Small pneumothoraces (≤1cm wide, confined to upper chest) that are unchanged on serial films, are observed and patient given high flow O2 to aid reabsorption
- Occult pneumothoraces due not require treatment unless patient requires mechanical ventilation
- Do not cause significant problems unless there is a continuous air leak or pre-existing cardiopulmonary disease ↑d incidence of empyema and bronchopleural fistula if leak persists beyond 24-48 hours

PNEUMOMEDIASTINUM:

- Subcutaneous emphysema or presence of Hamman crunch (over precordium) suggests pneumomediastium.
- Results from blunt chest trauma & alveolar rupture, with dissection of air along bronchoalveolar sheath.
- May be asymptomatic or result in mild-moderate chest pain, voice change, cough or stridor.
- ESSENTIAL:
 - Search for other injuries to larynx, trachea, bronchus, pharynx or oesophagus.

SYSTEMIC AIR EMBOLISM:

- An acute complication of severe chest trauma 🛛 disastrous circulatory and cerebral complications
- Those with penetrating chest wounds who require PPV are at most risk
- If suspected supprise position with 100% oxygen, trendelenburg position (no evidence)
- Other options:
 - Hyperbaric oxygen, 1 size 1 resorption

INTRABRONCHIAL BLEEDING:

- Poorly tolerated 🕅 rapidly leads to hypoxaemia and death
 - Haemorrhage into dependent alveoli hinders gas exchange
- Options:
 - ETT with frequent suctioning
 - Bronchoscopy to localize bleeding vessel
 - Double lumen tube to isolate bleeding to one lung

ASPIRATION:

- Common post trauma
- Leads to chemical pneumonitis
- No evidence for prophylactic antibiotics

TRACHEOBRONCHIAL INJURY:

- LOWER (INTRATHORACIC) TRACHEA/MAJOR BRONCHI:
 - Injured due to RAPID DECELERATION shear forces to mobile distal bronchi relative to more fixed proximal structures
 - MOST TRACHEOBRONCHIAL INJURIES OCCUR WITHIN 2CM OF THE CARINA OR AT THE ORIGIN OF THE LOBAR BRONCHI
 - ~10% have mild symptoms, but most are SOB, have haemoptysis or subcutaneous emphysema
 - Consider with large pneumothorax or pneumomediastinum

- AIR LEAK DUE TO BRONCHOPLEURAL FISTULA FOLLOWING TUBE THORACOSTOMY IS MASSIVE AND CONTINUOUS
- All lacerations of the bronchi involving \geq 1/3 circumference should be surgically repaired
- O Untreated tracheal tears I SEVERE MEDIASTINITIS and can lead to bronchial stenosis
- Tracheal transection almost always fatal 🗷 if survives, injury usually in cervical trachea
- Concurrent OESOPHAGEAL injuries in 25% of those with penetrating tracheobronchial injuries
- CERVICAL TRACHEAL INJURIES:
 - Blunt injuries are usually found at junction of trachea and cricoid cartilage
 - Evidence of direct trauma to the neck, including subcutaneous emphysema and inspiratory stridor, should raise suspicion for this injury
 - DON'T FORGET ASSOCIATED VASCULAR AND SPINAL INJURY THAT GO ALONG WITH THIS MECHANISM

DIAPHRAGMATIC INJURY:

- Caused most often by penetrating trauma, esp GSW
- Right-sided thought to be less common, but in fact left = right in incidence, it is just that right-sided injuries may be undiagnosed as the liver prevents herniation of abdominal contents in to the chest
- If a penetrating wound of the abdomen is associated with intrathoracic injury or foreign body, it should be assumed that the injury traversed the diaphragm
- CT has high sensitivity, but still, many injuries are only picked up at OT
- Complications:
 - Abdominal viscera migrate into the chest 🕅 can then become obstructed or ischaemic due to torsion or strangulation
- Needs surgical repair

OESOPHAGEAL INJURIES:

- Penetrating injury more common than blunt
- HIGH MORTALITY due to associated injuries
- If suspected imes oesophagogram should be performed due to risk of chemical mediastinitis with barium imes HIGH FALSE NEGATIVES
 - Higher sensitivity when combined with flexible oesophagoscopy

THORACIC DUCT INJURIES:

- Suspect in cases of penetrating trauma near the left proximal subclavian vein
- Usually only diagnosed after development of CHYLOTHORAX

RIB FRACTURES:

- SIMPLE RIB FRACTURES:
 - Assumed in any trauma patient with localised pain and tenderness over one or more ribs
 - Up to 50% not apparent on plain films
 - Principal goal with clinically suspected rib fractures is the DETECTION OF SIGNIFICANT ASSOCIATED COMPLICATIONS
 Maemopneumothorax, contusion, intra-abdominal injury
 - Pain can greatly interfere with ventilation and cause splinting and atelectasis
- FIRST/SECOND RIB FRACTURES:
 - It takes GREAT FORCE to fracture these ribs, given short length, relative immobility and protection by other structures (focal blunt trauma can do it, but this is rare)
 - Associated with other injuries:
 - Blunt myocardial injury
 - Bronchial tears
 - Major vascular injury
 - 15-30% associated with poor outcome

STERNUM FRACTURES:

- Usually occur at the body or manubrium
- Diagnosis usually on CT
- Used to be thought to be associated with life-threatening injury/arrhythmia
 - Sternal fracture associated with MVA actually only has 1.5% incidence of dysrhythmia and <1% risk of death