RESUSCITATIVE THORACOTOMY

IT IS RARE THAT A PATIENT SURVIVE THIS HEROIC INTERVENTION

THE MECHANISM OF INJURY IS OF UTMOST IMPORTANCE

THE EMERGENCY PHYSICIAN MUST HAVE A SYSTEMATIC PLAN AFTER OPENING THE CHEST

INDICATIONS AND CONTRAINDICATIONS:

CHEST INJURIES (GENERAL POINTS):

- If a patient has a reasonable chance of survival but cannot tolerate a delay in operative intervention, then consider EDT
- The type of cardiac electrical activity is also helpful in determining who may benefit:
 - Survival improved if rhythm is VF, VT, or PEA
 - \circ If asystole, idioventricular rhythm, bradycardia \rightarrow outcomes are poor
- MECHANISM OF INJURY:
 - No blunt trauma patient survived EDT if there were no vital signs present in the field (Branney et al)
 - However, 2.5% survived if there were
 - Rhee et al reviewed 24 studies and 4620 cases of EDT → overall survival rate for blunt trauma was 1.4%
 - Penetrating trauma has better outcomes, but difficult to predict
 - Survivors often had CPR (ranging up to 15 minutes)
 - Some had asystole
- Survivors of EDT have good neurologic outcomes (92% neurologically intact in one study

CARDIAC INJURIES – PENETRATING:

- Stab wounds fare much better than GSW
- Wound size ≤1cm can lead to tamponade → greater than this → continue to bleed → better survival rates in those with tamponade

CARDIAC INJURIES – BLUNT:

- Most common cause of death is myocardial rupture (often with ascending aorta rupture)
- Those who survive EDT had vital signs in the field

PULMONARY INJURIES:

- THREE TYPES \rightarrow parenchymal, tracheobronchial and large vessel
- Parenchymal and tracheobronchial injuries rarely need, either being rapidly fatal or treated initially by tube thoracostomy

AIR EMBOLISM:

• A complication of pulmonary parenchymal injuries and requires immediate thoracotomy

- Venous air well tolerated (up to 5-8mL/kg), arterial poorly tolerated (0.5mL in LAD can be fatal)
- Often missed
 - \circ Consider if \rightarrow haemoptysis or if arrest post intubation (positive pressure effect)
- EDT \rightarrow flood lung with saline to look for small fistulae
- If survives \rightarrow adjunctive therapy is HYPERBARIC

MAJOR VASCULAR INJURIES:

• Dismal prognosis, rarely survive

PENETRATING/BLUNT ABDOMINAL TRAUMA:

- CONTROVERSIAL
- Poor survival rates (even in penetrating)

OPEN CHEST RESUSCITATION (NON-TRAUMATIC ARREST):

- Better cardiac output
- Especially consider in setting of hypothermic arrest, rate of core rewarming can be as fast as 8C per hour.

EQUIPMENT:

EVERY MAJOR TRAUMA CENTRE SHOULD HAVE THORACOTOMY TRAY, INCLUDING:

- Scalpel with 20 blade
- Mayo scissors
- Rip spreaders
- Gigli saw/trauma shears
- 2 tissue forceps
- Vascular clamps
- Needle holders
- Sutures
- Teflon patches (for pledglets)
- Aortic tamponade instrument
- Skin stapler

PROCEDURE

PRELIMINARY CONSIDERATIONS:

- EXCLUDE OTHER CAUSES OF SHOCK:
 - \circ Tamponade
 - \circ Tension
 - Air embolism
 - Neurogenic shock
- Airway control → selectively intubate right lung, as lung inflation can hamper resuscitation efforts
- If possible, pass an NG to aid in distinguishing aorta from oesophagus
- Adequate anaesthesia/amnesia, as patient can become aware during successful EDT

ANTEROLATERAL INCISION:

- Wide exposure crucial
- Start 4th-5th intercostal space on right side of sternum and extend incision past the posterior axillary line
- Cut the intercostal muscles with scissors (just above the rib to avoid vascular bundle)
- First use your hands to open the chest cavity then place a chest wall retractor with ratchet bar directed down and open chest
- If the site of injury is not found, extend incision in to the right chest (using Gigli saw or trauma shears)

ONCE IN, WHAT CAN YOU DO?

PERICARDIOTOMY:

- To relieve tamponade
- Performed anterior and parallel to left phrenic nerve, beginning incision near the diaphragm
- Remove clots

DIRECT CARDIAC COMPRESSION:

- Two-handed technique best
- Avoid fingertip pressure
- Maintain normal anatomic position as able

CONTROL OF HAEMORRHAGIC WOUNDS:

- If ventricle bleeding \rightarrow fingertip pressure
 - If heart not beating \rightarrow close prior to resus and defibrillation
 - Can use staples or horizontal mattress sutures
 - Can occlude inflow to heart to make approximation of wound edges easier (SAUERBRUCH MANEOUVRE) \rightarrow see figure below

• Consider foley catheter for temporarily gaining haemostasis

CONTROL OF HAEMORRHAGIC GREAT VESSELS

AORTIC CROSS-CLAMPING:

- Limited role in controlling haemorrhage below the diaphragm, unless applied just prior to laparotomy
- The aorta can be very difficult to distinguish from the oesophagus in ED, especially when collapsed from exsanguination (NG can help)
- Potential complications:
 - Spinal cord, liver, bowel and renal ischaemia \rightarrow infrequent
 - Exponentially worse outcomes after 30 minutes \rightarrow intermittently release pressure as able

COMPLICATIONS:

- Most complications relate to primary injury
- SERIOUS INFECTION IS UNCOMMON \rightarrow IV ANTIBIOTICS CRUCIAL
- Disease transmission to health care workers
 - Higher rates of HIV, HCV and HBV in trauma patients
 - Higher rates of needle stick injuries and broken ribs as portal of entry