UROLOGIC STONE DISEASE

THE FIRST EPISODE OF URINARY CALCULI FOR MEN OCCURS AT ~30, RANGE 20-50. FIRST OCCURRENCE IS RARE AFTER 60

WOMEN DEVELOP STONES IN <u>BIMODAL DISTRIBUTION</u> \rightarrow around 35 and 55

CHILDREN <16 ACCOUNT FOR 7% OF CASES \rightarrow MOST COMMON CAUSE IN PAEDIATRICS ARE METABOLIC ABNORMALITIES (50%), UROLOGIC ANOMALIES (20%) AND INFECTION (15%) \rightarrow IMMOBILISATION STONES IN 5%

PATHOPHYSIOLOGY:

- Stone formation is a multistep process that includes:
 - Supersaturation of the urine with urinary solutes
 - Lack of inhibitor substances
 - Urinary stasis
- Increasing the amount of solvent (urine) and decreasing the amount of solute (e.g. calcium, uric acid) can aid in prevention
- Urinary inhibitors such as citrate, magnesium, uromodulin \rightarrow can prevent crystal precipitation and stone formation
- Free flow of urine can help increase the amount of solvent and wash away crystals
- STASIS can result from:
 - Neurogenic bladder
 - Anatomic anomalies
 - Presence of foreign bodies (e.g. suture)
- ~75-80% of all calculi are COMPOSED OF CALCIUM:
 - Oxalate, phosphate or both
 - Calcium excretion is elevated in conditions that include:
 - Hyperparathyroidism
 - Absorptive and renal hypercalciuria
 - Immobilisation syndrome
 - Oxalate secretion is enhanced in IBD, those with small bowel resection
- 10-15% of stones are STRUVITE (magnesium-ammonium phosphate):
 - \circ These stones are associated with infection by UREA-SPLITTING ORGANISMS
 - Most common cause of STAGHORN CALCULI → form a cast of the renal pelvis
 - \circ Urea-splitting organisms include \rightarrow proteus, klebsiella, staph
 - Antibiotic penetration into staghorn calculi is poor → potential for urosepsis exists as long as these remain → surgical intervention recommended
- URIC ACID STONES \rightarrow 10% of urolithiasis
 - ~25% OF PATIENTS WITH GOUT WILL DEVELOP KIDNEY STONE AND THEY OCCUR ~1% PER YEAR AFTER THE FIRST ATTACK

- Urate stones are RADIOLUCENT
- CYSTINE STONES ARE RARE
- Some medications predispose to stones:
 - Protease inhibitor → INDINAVIR → associated with 4-10% incidence of symptomatic urolithiasis
 - Carbonic anhydrase inhibitors
 - o Triamterene
 - Laxative abuse
- With appropriate evaluation, 90% of stones can have cause identified and 85% of calcium oxalate stones can be prevented

Table 97-1 Risk Factors for the Development of Urinary Calculi				
Risk Factor	Mechanisms			
Bowel disease	Promotes low urine volume; acidic urine depletes available citrate (inhibitor); hyperoxaluria			
Excess dietary meat	Creates acidic urinary milieu, depletes available citrate (inhibitor); promotes hyperuricosuria			
Excess dietary oxalate	Promotes hyperoxaluria			
Excess dietary sodium	Promotes hypercalciuria			
Family history	Genetic predisposition			
Insulin resistance	Ammonia mishandling; alters pH of urine			
Gout	Promotes hyperuricosuria			
Low urine volume	Allows solute to supersaturate			
Obesity	May promote hypercalciuria; dietary discretions above			
Primary hyperparathyroidism	Creates persistent hypercalciuria			
Prolonged immobilization	Bone turnover creates hypercalciuria			
Renal tubular acidosis (type 1)	Alkaline urine promotes calcium phosphate supersaturation; loss of citrate (inhibitor)			

- Pain associated with kidney stones is due to OBSTRUCTION OF A HOLLOW VISCOUS ORGAN (URETER) and SUBSEQUENT HYDRONEPHROSIS CREATING PRESSURE AGAINST GEROTA FASCIA → causing flank pain
 - A migrating, but non-obstructive stone also causes pain
- If unrelieved, irreversible renal damage occurs within 3 weeks with complete obstruction
 - During acute obstruction, most patients have no rise in serum creatinine because the unobstructed kidney functions at up to 185% of its baseline capacity
 - A rise in creatinine in acute obstruction suggests a solitary kidney or preexisting renal disease such that the unobstructed kidney is unable to compensate completely
- The PROBABILITY OF SPONTANEOUS PASSAGE OF STONES IS DETERMINED BY:
 - o Size
 - o Shape
 - o Location
 - Degree of ureteral obstruction

- Most common sites of obstruction:
 - PELVI-URETERAL JUNCTION (PUJ)
 - PELVIC BRIM
 - VESICOURETERIC JUNCTION (VUJ) \rightarrow this is the most constrictive site of the ureter due to the muscular coat of the bladder
- BASED ON SIZE ALONE:
 - 0 98% of stones <5mm will pass within 4 weeks without intervention
 - o 60% of stones 5-7mm
 - 39% stones >7mm will pass within 4 weeks
 - A measured stone on CT is 88% of actual size

CLINICAL FEATURES:

- CLASSIC SYMPTOM COMPLEX IS:
 - Acute onset of crampy, intermittent pain that originates in the flank and radiates to the groin
 - Pain is visceral in nature
- Patients may demonstrate rebound tenderness (29%), guarding (61%) and rigidity (8%)
- Pain is accompanied by N+V in 50%
- The adrenergic response to pain can result in tachycardia, hypertension and diaphoresis
- Haematuria is present in ~85%, whereas only 30% have gross haematuria
- The location of the pain correlates somewhat with the location:
 - Upper ureter \rightarrow flank
 - Mid-ureter \rightarrow lower anterior quadrant of abdomen
 - Distal \rightarrow groin
- Stones in VUJ can mimic a UTI by causing frequency, urgency and dysuria in 3-24% cases
- Overall \rightarrow 20-30% of children may have only painless haematuria with urologic stone disease
- HISTORY SHOULD ASCERTAIN:
 - Risk factors for stone development
 - Risk factors for poor stone-related outcome

able 97-2 Important Historical Features for Poor Outcome with Stone
enal function at risk
iabetes
ypertension
enal insufficiency
ingle kidney
orseshoe kidney
ransplanted kidney
istory of difficulty with stones
xtractions
tents
reterostomy tubes
thotripsy
ymptoms of infection
ever
ypotension
ystemic illness
rinary tract infection

- Risk factors for mimickers:
 - AAA → stones do not usually present in men older than 60 and DO NOT CAUSE HYPOTENSION UNLESS THE PATIENT IS SEPTIC. Renal colic is the most common misdiagnosis given to patients with ruptured AAA
 - RENAL ARTERY THROMBOSIS → need to think about it, as early on, no change will be seen as no contrast is given in standard CT KUB

DIAGNOSIS:

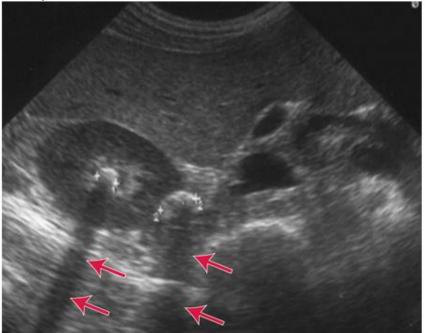
- Diagnosis is clinically suspected, supported with presence of haematuria and imaging confirms the diagnosis with certainty
- LAB EVALUATION:
 - Centres on evaluation for infection, kidney dysfunction and possibility of pregnancy (i.e. consider ectopic and risk of imaging)
 - HAEMATURIA \rightarrow either its presence or absence can mislead clinicians:
 - 10-15% of patients with nephrolithiasis WILL HAVE NO HAEMATURIA
 - In contrast, of patients with flank pain and haematuria → 24% HAVE NO RADIOGRAPHIC EVIDENCE OF URETEROLITHIASIS
 - Check renal function
 - Unless febrile or systemically ill → FBC does not add much as many patients will have stress demargination and adrenergic response
 - Other tests \rightarrow Calcium and uric acid \rightarrow may help aid in diagnosis of the cause of the stone
- IMAGING:
 - Confirms presence of ureteral stone, rules out other diagnoses, defines stone location and assists with management if the stone fails to pass
 - $\circ\,$ In patients for whom the physician had a high pretest probability, CT showed a stone in only 80% and an alternative diagnosis was revealed in 33%

- CURRENT ADVICE IS TO SCAN ON FIRST PRESENTATION OF RENAL COLIC
- As for patients with recurrent renal colic, the need for imaging hinges on:
 - Did the patient have a complication with previous stones?
 - Is the diagnosis in question (?drug seeker, age >50)
 - What is the patient's previous radiation load

Table 97-3 Ancillary Tests in Urologic Stone Disease					
Test	Sensitivity (%)	Specificity (%)	LR+	LR-	Comments
Noncontrast CT 94–97	96-99	24-	0.02-	Advantages: speed, no RCM, detects other diagnoses	
	×	0.04	Disadvantages: radiation, no evaluation of renal function		
IV urogram 64–90 94–100	64-90	94-100	15-	0.11-	Advantage: evaluates renal function
		×	0.15	Disadvantage: RCM (allergy, nephrotoxicity, metformin)	
US 6	63-85	79-100	10- ×	0.10- 0.34	Advantages: pregnancy, no RCM, no radiation, no known side effects
					Disadvantages: insensitive in middle third of the ureter, may miss smaller stones (<5 mm)
Plain abdominal radiograph	29-58	69-74	1.9- 2.0	0.58- 0.64	Advantage: may be used to follow stones
					Disadvantage: poor sensitivity and specificity

• CT:

- Both sensitive and specific
- Shows secondary signs of ureteral obstruction → ureteral dilation, stranding of perinephric fat, dilatation of the collecting system, renal enlargement
- In combination, unilateral ureteral dilation and perinephric stranding is 96% for stone disease and if both are absent, NPV 93-97%



- IV UROGRAPHY:
 - Yields information about renal function and anatomy → detects calculi with modest sensitivity but excellent specificity → can be an adjunction to CT if functional information and knowledge on the degree of obstruction is required
- PLAIN ABDOMINAL RADIOGRAPHS:
 - Approximately 90% of urinary calculi are RADIOOPAQUE because calcium phosphate and oxalate have density similar to bone
 - $\circ\,$ Urate stones are essentially radiolucent as are most stones related to medications
 - Plain film is neither sensitive nor specific enough to rule in or rule out a diagnosis of ureterolithiasis → HOWEVER, ONCE THE LOCATION OF A STONE IS KNOWN ON CT, THE PROGRESSION CAN BE FOLLOWED BY PLAIN FILMS IF THE STONE IS VISIBLE

• ULTRASOUND:

- If patients are not candidates for CT due to concerns about radiation (pregnancy and children) → US can assist
- May miss smaller stones (<5mm) and mid-ureteric stones

US of renal pelvis showing stones

• IT IS 98% SENSITIVE FOR DETECTING **HYDRONEPHROSIS:**

- However, of hydronephrosis diagnosed by US, up to 22% DO NOT REPRESENT OBSTRUCTION, but rather → normal anatomic variation, full bladder, renal cysts
 - Rapid crystalloid bolus can result in false positive
- Obesity may interfere with good image acquisition
- Advantages \rightarrow noninvasive, no radiation, no known side effects

DIFFERENTIAL DIAGNOSIS:

Table 97-	4 Differential Diagnoses for Ureterolithiasis				
Vascular	Aortic dissection				
	Abdominal aortic aneurysm				
	Renal artery embolism				
	Renal vein thrombosis				
	Mesenteric ischemia				
Renal	Pyelonephritis				
	Papillary necrosis				
	Renal cell carcinoma				
	Renal infarct				
	Renal hemorrhage				
Ureter	Blood clot				
	Stricture				
	Tumor (primary or metastatic)				
Bladder	Tumor				
	Varicose vein				
	Cystitis				
GI	Biliary colic				
	Pancreatitis				
	Perforated peptic ulcer disease				
	Appendicitis				
	Inguinal hernia				
	Diverticulitis				
	Cancer				
	Bowel obstruction				
Gynecologic	Ectopic pregnancy				
	Pelvic inflammatory disease/tubo-ovarian abscess				
	Ovarian cyst				
	Ovarian torsion				
	Endometriosis				
GU	Testicular torsion				
	Epididymitis				
Other	Drug-seeking behavior				
	Shingles				
	Retroperitoneal hematoma/abscess/tumor				

TREATMENT:

- Treatment for symptomatic nephrolithiasis in the ED includes:
 - o Analgesia
 - Antiemetics
 - Antibiotics \rightarrow for those with evidence of infection
 - Medical expulsion therapy \rightarrow tamsulosin less in vogue, not as certain of efficacy after systematic review \rightarrow more for helping in pain relief
 - IV rehydration
- Forced IV hydration results IN NO DIFFERENCE IN PAIN CONTROL OR STONE PASSAGE RATES WHEN COMPARED TO MINIMAL HYDRATION
 → fluids should be given to correct any fluid deficit due to vomiting or limited oral intake
- NSAIDS are primary choice of analgesics as they have a direct action on the ureter by inhibiting prostaglandins
 - Used in caution in those with GI bleeding risks and renal impairment
- Narcotics
- METOCLOPRAMIDE → in one study was shown to provide pain relief equivalent to narcotic analgesics in addition to relieving nausea
- IV antibiotic selection:
 - AMPICILLIN 2G PLUS GENTAMICIN
 - CEFEPIME/CEFTRIAXONE IF PENICILLIN ALLERGIC
 - GIVE CIPRO IF ALLERGIC TO BOTH
- ALPHA BLOCKERS (MEDICAL EXPULSION THERAPY):
 - One study showed that alpha blockers were associated with increased rate of expulsion, decreased pain and decreased time to expulsion → this study has since been challenged with advent of systematic review
 - Approximately 4% of patients will have adverse effects
 - Most utility for distal stones, where the number and density of alphareceptors is greatest
 - TAMSULOSIN 400 MICROG DAILY FOR UP TO FOUR WEEKS

DISPOSITION AND FOLLOW UP:

• Most patients are discharged with urologic or primary care follow up

Table 97-5 Indications for Admission

Absolute Indications for Admission	Relative Indications for Admission
Intractable pain or vomiting	Fever
Urosepsis	Solitary kidney or transplanted kidney without obstruction
Single or transplanted kidney with obstruction	Obstructing stone with signs of urinary infection
Acute renal failure	
Hypercalcemic crisis	Urinary extravasation
Severe medical comorbidities	Significant medical comorbidities
	Stone unlikely to pass—large stone in proximal ureter

- Because of lower rates of spontaneous passage \rightarrow patients with Large (>5mm), irregular or proximal stones should be considered for admission
- Have a lower threshold for admission in those with concurrent severe underlying disease
- EMERGENT DECOMPRESSION MAY BE REQUIRED IN:
 - Solitary kidney with complete obstruction
 - o Ureterolithiasis with hydronephrosis and fever
 - Urosepsis with obstruction
- URGENT UROLOGY OPINION NEEDED FOR:
 - Renal insufficiency
 - Severe underlying diseases
 - Complete obstruction or UROMA
 - Multiple ED visits
 - Stone >6mm
 - UTI without sepsis
- Discharge is appropriate in those with:
 - o Smaller stones
 - \circ In the absence of infection
 - When pain is controlled by oral analgesics
- Average time to stone passage varies according to size and location \rightarrow may range up to 7-20 days for stones 5-6mm in diameter
- ADVISE TO RETURN IF:
 - Fevers
 - Uncontrolled pain
 - Vomiting
- PROVIDE SCRIPT FOR ORAL OPIATE AND NSAIDS
- If the stone passes in ED, no further treatment is required
- For patients with haematuria and negative imaging studies, and no other source → outpatient urologist follow up

SPECIAL POPULATIONS/CONSIDERATIONS:

- Stones occur in 1 in 1500 pregnancies and 80-90% present in the second or third trimester
 - Presentation is the same as the nonpregnant population
 - US is imaging modality of choice
 - Problem is that 90% of pregnant patients display PHYSIOLOGIC HYDRONEPHROSIS due to ureteric compression by the gravid uterus, most often more severe on the right side
 - Radiation doses for various modalities are:
 - KUB x-ray \rightarrow 0.05-0.15cGy,
 - 3 film IV pyelogram \rightarrow 0.15-0.2 cGy
 - CT scan \rightarrow 2.2-2.5cGy
- Children with stones need investigation for metabolic diseases and anatomic abnormality
 - $\circ\,$ Treatment is analgesia and antiemetics as stones are easier to pass in childrena than in adults
 - Medical expulsive therapy has NOT BEEN STUDIED IN KIDS
- Patients who have a known stone who return for continued pain relief:
 - \circ Evaluate EUC for worsening renal function
 - US to evaluate for worsening obstruction
 - Movement of stone \rightarrow plain film KUB
 - Evidence of infection