FLUIDS AFTER-HOURS

Prepared by Arunima Jain

- Approach to fluid balance
- Basic physiology
- Cases and questions!

Fluid balance

Assessing fluid status

History

- Intake / output
- Orthopnoea, paroxysmal nocturnal dyspnoea
- Dizziness/light-headedness/postural symptoms
- Physical examination
 - Physical appearance
 - Skin turgor, mucous membranes
 - Peripheries, pulse, capillary refil
 - Central capillary refil
 - JVP
 - Cardio/respiratory examination
 - Peripheral oedema
- End organ effects
 - Mental state
 - Urine output

Objective measures

Bedside

- HR, BP
- Weight
- Postural blood pressure
- Fluid balance chart
- Bloods
 - Lactate
- Urine
 - Urine Na < 20 (hypovolemia or low effective volume in certain cases)
 - Urine output

What is normal...

- Sodium intake?
 - 1-2 mmol/kg/day
- Potassium?
 - 1 mmol/kg/day
- Chloride?
 - 1 mmol/kg/day
- Water intake?

How do I account for losses?

Examples: vomiting, diarrhoea, stoma, biliary drain loss...

Losses to consider...

Vomiting

20-40mmol Na+ /L, 14 mmol K+ /L, 60-80 mmol H+/L

140 mmol Cl- /L

Can cause metabolic alkalosis!

- Diarrhoea:
 - 30-140mmol Na+ /L, 30-70 mmol K+ / L,
 - 20-80 mmol HCO3-

Can cause normal anion gap metabolic acidosis!

Stoma

100-140 mmol Na+/L, 4-5 mmol K+/L, 75-125 mmol/L CI-

- Biliary loss
 - 145 mmol Na+ /L, 5 mmol K+/L, 105 mmol Cl-/L, 30 mmol HCO3-/L

Vomiting and nasogastric tube loss

Gastric fluid contains:

- 20–60 mmol Na*/I
- 14 mmol K*/l
- 140 mmol/l Cl⁻/l
- 60-80 mmol H*/l.

Excessive loss causes a hypochloraemic (hypokalaemic), metabolic alkalosis. Correction requires supplemental K* and CI*.

Biliary drainage loss

- 145 mmol Na*/I
- 5 mmol K*/I
- 105 mmol CI-/I
- 30 mmol HCO₃-/I

Diarrhoea or excess colostomy loss

- 30-140 mmol Na*/I
- 30-70 mmol K*/I
- 20-80 mmol HCO,-/I

High volume ileal loss via new stoma, high stoma or fistula

100–140 mmol Na'/l 4–5 mmol K'/l 75–125 mmol Cl'/l 0–30 mmol HCO_/l

Lower volume ileal loss via established stoma or low fistula

50-100 mmol Na*/l 4-5 mmol K*/l 25-75 mmol Cl*/l 0-30 mmol HCO,/l

'Pure' water loss (eg fever, dehydration, hyperventilation)

Mainly insensible water loss (ie relatively low electrolyte content); results in potential hypernatraemia.

Pancreatic drain or fistula

- 125–138 mmol Na*/I
- 8 mmol K*/1
- 56 mmol CI^{-/}I
- 85 mmol HCO₃/I

Jejunal loss via stoma or fistulo

- 140 mmol Na*/I
- 5 mmol K*/I

100

Ongoing blood loss

(eg melaena)

- 135 mmol Cl⁻/l
- 8 mmol HCO₃/I

Inappropriate urinary loss

(eg polyuria)

Na*/I and K*/I very variable, so monitor serum electrolytes closely. Match hourly urine output (minus 50 ml) to avoid intravascular depletion.

NICE Guidelines, UK

33 year old female, presents with nausea and vomiting...

Cases:

	Sodium Level	* L 131 mmol/L
	Potassium Level	* L 2.6 mmol/L
	Chloride Level	* L 75 mmol/L
	Bicarbonate Level	* C 41 mmol/L
	Urea Level	* 4.2 mmol/L
	Creatinine	* 46 umol/L
eG	FR CKD-EPI	* >90 mL/min/1.
	Bilirubin Total	
	Protein Total Level	
	Albumin Level	39 g/L
	ALP	
	GGT	
	ALT	
	AST	
	Calcium Level	2.53 mmol/L
	Corrected Calcium Level	2.48 mmol/L
	Magnesium Level	L 0.66 mmol/L
2	Phosphate Level	1.37 mmol/L

What would your approach be?

- Fluid status
 - History
 - Documented losses
- Current intake / output
 - Urine output!
- Comorbidities
- Medications

What choices do you have?

	Na⁺	Cl	K⁺	(HCO₃⁻)	(glucose)
NORMAL PLASMA	135-145	100-110	3.5-5.0	22-26	3.5-7.8
Sodium chloride 0.9%	154	154	-	-	-
Hartmann's solution	131	111	5	29	-
5% Dextrose	-	-	-	-	50g (170 calories)
Dextrose-saline 4%/0.18%	30	30	-	-	40g

*Consider albumin and blood products if appropriate *Oral supplementation with Slow K (600mg = 8 mmol) or Chlorvescent (1 tab = 14mmol)

Approximately 60kg

•Estimating: 120 mmol Na, 60 mmol K, 60 mmol CI required assuming NO INPUT

•Vomiting related losses – 2L

- •Approx 80 mmol sodium
- •80 mmol potassium, 200mmol chloride

A well 33 year old...

A 33 year old with a history of...

- ESKD on HD
 - On 1L FR
 - Factor in fluid restriction / urine output, potassium!
- Cardiomyopathy awaiting heart transplantation
- Child Pugh C cirrhosis
 - Cautious with administration of sodium load
- A 5 day fast

Questions?

Case 2:

- 75M with CKD, HTN and T2DM presents with chest pain and shortness of breath. Asked to review for tachypnoea
 - Examination consistent with fluid retention
 - Plan for imminent angiogram
 - Creatinine rise from 240 \rightarrow 350 with eGFR now 15

Medications:

- Telmisartan/HCT 40mg/12.5mg
- Furosemide 40mg
- Jardiamet 1000/12.5mg
- Insulin
- Allopurinol
- PRN ibuprofen

What would you do?

- A) WH all divretics and nephrotoxins pending team review in the morning
- □ B) Give IV furosemide
- C) Pre hydrate with 1L normal saline, then give IV furosemide and post hydrate in preparation for angiogram
- D) Give fluids and bicarbonate infusion, then diurese
- E) Call Renal

General management of hypervolemia

- Non pharmacological
 - Low sodium diet (<2g)</p>
 - Fluid restriction
- Pharmacological
 - Diuresis
 - Dialysis
 - Manage precipitant causes

Factors to consider with diuretics

Dose-response curve

- Secreted into tubular lumen and act on luminal membrane
- □ If 40mg does not work \rightarrow 80mg, etc.
- Nephrotic syndrome
 - Divietics are highly protein bound, and confined to the vascular space
 - In hypoalbuminaemic patients, Vd is increased and slows rate of delivery to the kidney
- - Decreased renal perfusion impacting divertic delivery to kidney
 - \square Delayed intestinal absorption \rightarrow role for burnetanide

Questions?

Case 3

- □ 47M presents with seizure...
- BG: Asthma
- History of heavy drinking over the past few weeks, but hadn't drunk for 24 hours
- Given 5mg IM midazolam, 1L normal saline, 20mg
 PO diazepam, 500mg IV thiamine

	Case 3	19/03/2022 01:36
B	ood Chemistries	
	Sodium Level	* C 117 mmol/L
	Potassium Level	* C 2.2 mmol/L
	Chloride Level	* L 78 mmol/L
	Bicarbonate Level	* L 12 mmol/L
	Urea Level	* L 1.4 mmol/L
	Creatinine	* L 50 umol/L
e(SFR CKD-EPI	* >90 mL/min/1.
	Bilirubin Total	
	Protein Total Level	
	Albumin Level	
	ALP	
] GGT	
	ALT	
	AST	
	Troponin T	* H 698 pg/l
	Calcium Level	n oso ng/c
	Corrected Calcium Level	
	Iron Level	
	Transferrin saturation	
	Transferrin	
	Ferritin	
	Glucose Level	
	Osmolality Random	* H 8.2 mmol/L
	Osmolality Calculated	* L 246 mmol/kg
	Osmolality Gap	* L 244 mmol/kg
	Magnesium Level	* 2 mmol/kg
	Phosphate Level	
	Vitamin B12 Level.	
	Folate Level.	

Case 3	19/03/2022 01:36	
Blood Chemistries		
Sodium Level	* C 117 mmol/l	
Potassium Level	* C 2 2 mmol/L	
Chloride Level	* 1.78 mmol/l	
Bicarbonate Level	* L 12 mmol/L	
Urea Level	* 1.1.4 mmol/l	What is the patient's
Creatinine	* 1.50 umol/l	fluid status?
eGFR CKD-EPI	* > 90 ml /min /1 1	tiula statuse
Bilirubin Total	> 50 mc/mm//1.	
Protein Total Level		
Albumin Level		\A/hat's in the LIPINIE2
ALP		
GGT		
ALT		• I Irine osmolality: 309
AST		
Troponin T	* H 600 a a //	•Urine Na: //
Calcium Level	~ H 696 hg/L	
Corrected Calcium Level		
Iron Level		\//hat are his undiganosed
Transferrin saturation		what are his unalagnosed
Transferrin		comorbidities:
E Ferritin		
Glucose Level		
Osmolality Random	* H 8.2 mmol/L	•HF
Osmolality Calculated	* L 246 mmol/kg	•Cirrhosis
Osmolality Gap	* L 244 mmol/kg	
Magnesium Level	* 2 mmol/kg	
Phosphate Level		
Vitamin B12 Level.		
Folate Level.		

Hyponatremia

- Serum Na
 - Severe hyponatremia: Na < 120 mmol/L</p>
 - Moderate hyponatremia: Na 120 129 mmol/L
 - Mild hyponatremia: Na 130 134 mmol/L
- Exclude pseudohyponatremia
 - Pseudohyponatremia occurs when seemingly low sodium levels are actually normal.
 - Causes include hyperglycemia, hyperproteinemia, mannitol use, or laboratory errors.

Symptoms of hyponatremia

- Nausea, vomiting
- Headache, neuropsychiatric symptoms, weakness
- Lethargy
- Seizures
- 🗆 Coma

Investigations

Serum osmolality

- If clinically dehydrated would suspect high osmolality
 Low in states of fluid retention, SIADH, etc
- Urine osmolality
 - □ Urine Osmolality < 100 mmol/L \rightarrow DILUTE urine
 - Primary polydipsia, beer potomania, malnourished
 - High urine osmolality + low urine Na
 - Often indicates patient is intravascularly dry

Osmolalities continued

- Interplay between osmolality / ADH and RAS system
- One way to approach...
 - Serum osmolality should be around 280-295 mmol/L
 - Urine adapts, as low 50 mmol/L and as high as 1200mmol/L
 - Eg: if a 60kg patient ingests 10mmol/kg (usual)
 - 600mmol intake at 50mmol/L urine output = 12L urine
 - 600mmol intake 1200mmol/L = 0.5L urine
 - Eg: if only 100mmol ingested
 - 100 mmol intake and 50mmol/L urine output = 2L
 - If patient drinks 3L (water/alcohol) sodium will fall
 - Not enough solute to make urine and excrete free water

Classified based on fluid status

(From Kumar S, Berl T. Diseases of water metabolism. In: Schrier RW, ed. Atlas of Diseases of the Kidney. Philadelphia, PA: Current Medicine, Inc.; 1999; with permission.)

Source: Navin Kumar, Anica Law: Teaching Rounds: A Visual Aid to Teaching Internal Medicine Pearls on the Wards www.accessmedicine.com Copyright © McGraw-Hill Education. All rights reserved.

SIADH

□ MADCHOP?

- Major surgery: abdominal, thoracic, intracranial
- ADH production: adenocarcinoma, bronchogenic carcinoma
- Drugs: antidepressants, psychotrpics, chemotherapy, others
- CNS disorders: trauma, brain tumour, meningitis, SAH, SLE
- Hormone deficiencies: hypothyroidism, adrenal insufficiency
- Others: HIV, GCA, etc.
- Pulmonary: pneumonia, TB, abscess

Management

- Important to establish:
 - Symptomatic vs asympmtomatic
 - Acute versus chronic?
 - Risk of osmotic demyelination syndrome?
 - Less of an issue in acute hyponatremia
 - Sodium at presentation <125, specifically <105 in chronic hyponatremic patients</p>
 - Alcoholism, liver disease, malnutrition

AJKD Core Curriculum

Table 1. Suggested Treatment Strategies for Management of Hyponatremia According to Chronicity, Symptom Severity, and Risk for ODS

Presentation	Risk for ODS	Goal Increase in [Na ⁺]	Limit to Increase in [Na⁺]	Treatment Strategy			
Acute Hypotonic H	lyponatremia (duration veri	ified to be <48h)					
Severe symptoms	Negligible	Rapid increase by 4-6 mEq/L, then gradual increase to normalization	Normalization	Rapidly increase [Na ⁺] by 4-6 mEq/L with up to three 100-mL boluses of hypertonic saline solution given over 10 min at a time, followed by hypertonic saline solution at 1 mL/kg/h until substantial normalization. If rapid spontaneous correction occurs, it need not be constrained.			
Mild or moderate symptoms	Negligible	Normalization	Normalization	Fluid restriction alone if cause rapidly reversible. Otherwise, hypertonic saline solution at 1 mL/kg/h until substantial normalization.			
Chronic Hypotonic	Chronic Hypotonic Hyponatremia (duration known to be >48 h or uncertain)						
Severe, moderate, or mild symptoms	Highª	4-6 mEq/L in 24 h	8 mEq/L in any 24-h period	Treatment according to cause (volume repletion for hypovolemic hyponatremia, water restriction with SIADH or hypervolemic hyponatremia, etc) and severity of symptoms. Hypertonic saline solution for severely symptomatic hyponatremia with risk for seizures or herniation or a vaptan or urea for mild to moderate refractory euvolemic or hypervolemic hypematremia. During early phase, closely monitor [Na*] every 2-4 h and urine output. Re-lower [Na*] with IV D5W or enteral water ± desmopressin, 1-2 µg, every 6 h if correction over rapid.			
Severe, moderate, or mild symptoms	Intermediate	4-8 mEq/L in 24 h	10-12 mEq/L in any 24-h period and no more than 18 mEq/L in any 48-h period	Same strategy as high-risk ODS patients, except with less strict [Na $^{+}$] correction limits.			
Moderate or mild symptoms	Low (initial [Na⁺] > 125 mEq/L)	Normalization	Nomalization	Treatment according to cause. Consider vaptan or urea for refractory euvolemic or hypervolemic hypernatremia.			

Note: In patients with substantial risk for ODS (especially those with starting [Na⁺] < 120 mEq/L) who experience an increase in [Na⁺] exceeding the recommended limit, consider re-lowering [Na⁺] to a value below target by administration of electrolyte-free water. Urine output and/or osmolality should also be followed to detect onset of a spontaneous water diuresis (especially with volume depletion or thiazide-associated hyponatremia) that can lead to over rapid correction. Desmopressin may be useful in this setting to limit ongoing urinary water loss.

Abbreviations: D5W, 5% dextrose in water; N, intravenous; [Na*], serum sodium concentration; ODS, osmotic demyelination syndrome; SIADH, syndrome of inappropriate antidiuretic hormone secretion.

Based on recommendations from Verbalis et al (Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med. 2013;126(10)(suppl 1):S1-S42).

^a[Na⁺] ≤ 105 mEq/L, hypokalemia, alcoholism, malnutrition, and advanced liver disease.

Back to our case

Management considerations:

- How would you replace sodium / potassium / phosphate / magnesium?
- Where should this be done and how often would you repeat blood tests?

Other factors:

- Fluid overload / diuresis
- Risk of refeeding
- Alcohol withdrawal

Thank you!

Email: arunima.jain@health.nsw.gov.au