Alert
Osmolarity: Sodium chloride 23.4%: 8010 mOsm/L. Sodium supplementation is not always appropriate and fluid restriction may be appropriate in the management of hyponatraemia. Treatment should always be tailored to the cause. Although, it can be used for both IV and oral routes, ANMF recommends 3% sodium chloride for IV administration and sodium chloride 23.4% to be restricted for oral administration.

Indication
Treatment of hyponatraemia.

Action

Drug type
Sodium chloride 23.4% contains 234 g/L sodium chloride, equivalent to 4 mmol/mL of sodium.

Trade name
Sodium chloride 23.4%.

Presentation
Sodium chloride 23.4% – 10 mL vial.

Dose

Oral supplementation
Start at 2–4 mmol/kg/day (0.5–1 mL/kg/day) and increase as required, divided into 3–12 doses.

IV supplementation
Sodium chloride 3% is recommended.
On rare occasions, if sodium chloride 23.4% is required for IV, refer to special comments section for preparation and administration.

Dose adjustment
Therapeutic hypothermia – No information.
ECMO – No information.
Renal impairment – No information.
Hepatic impairment – No information.

Maximum dose

Total cumulative dose

Route
PO
IV (refer to special comments section)

Preparation
Oral: Sodium chloride 23.4% vials or oral preparation supplied by pharmacy.
IV infusion: Refer to special comments section.

Administration
Oral: To be given mixed with feeds.
Divide the daily oral dose into 3–12 doses, aiming for a small but practical volume.

IV infusion: Refer to special comments section.

Monitoring
Oral: Signs of gastric irritation.
IV: Local IV site for signs of extravasation.
Serum sodium as per clinical team’s recommendation.

Contraindications
Oral: Infants who are not any enteral nutrition, acute gastrointestinal illness including ileus, necrotising enterocolitis, intestinal obstruction.

Precautions
Impaired renal function, cardiac insufficiency, pre-existing oedema with sodium retention.

Drug interactions
No information.

Adverse reactions
Hypernatraemia, volume overload, congestive heart failure, respiratory distress.
Hyperchloremia, hypercalciuria.
Disseminated intravascular coagulation (DIC) is associated with inadvertent injections of sodium chloride into blood vessels of the uterus or placenta due to hypernatraemic shock. Not reported in infants.
Osmotic demyelinating syndrome.
Fever
IV site: Extravasation, phlebitis, venous thrombosis.
Oral: Gastric irritation.

Compatibility
IV Fluids: Glucose 5%, glucose 10%, glucose 5% in sodium chloride 0.9%, glucose 5% in sodium chloride 0.45%, sodium chloride 0.9%, sodium chloride 0.45%.
Y site: No information.

Incompatibility
IV Fluids: Fat emulsion.
Y site: No information.
Amino Acid solutions – No information.

Stability
Oral solution: Supplied by pharmacy with a 7-14 day expiry. Check with local pharmacy.
Vials: Use immediately after opening and discard the unused potion. Check with local pharmacy.

Storage
IV: Store at room temperature, 20–25°C.
Oral solution: Refrigerate (2–8°C).
SODIUM CHLORIDE 23.4%

Newborn use only

<table>
<thead>
<tr>
<th>Vials: Store at room temperature, 20–25°C, once opened refrigerate vials (2–8°C)</th>
</tr>
</thead>
</table>

Excipients

| Special comments | Osmolarity of undiluted hypertonic sodium chloride is > 1000 mOsm/L, posing the risk of extravasation for peripheral IV solutions. So, local consensus was to bring the osmolarity of IV preparation to 2.4% sodium chloride that has 0.4 mmol/mL of sodium and an estimated osmolality of 855 mOsm/L. Total body water is traditionally calculated as weight x 0.6 in children. Greater total body water content in newborns should be considered and therefore should be calculated as weight x 0.75. |

IV preparation and administration

CAUTION—CANNOT BE GIVEN UNDILUTED.

Severe hyponatraemia < 120 mmol/L or symptomatic hyponatraemia:

- Infuse sodium chloride at 0.4 mmol/kg/hour until symptoms abate or serum sodium ≥ 120 mmol/L. Then infuse sodium chloride at 0.15 mmol/kg/hour for 48 hours or until desired serum sodium is achieved.
- Therapeutic goal is to increase serum sodium by 7 mmol/L/day.

IV supplementation

- Start at 2–4 mmol/kg/day and increase as required.

IV infusion:

- Draw up 5 mL (20 mmol sodium) of 23.4% sodium chloride and add 45 mL of water for injection to make a final volume of 50 mL with a final concentration of 0.4 mmol/mL.
- Infusion at 1 mL/kg/hour = 0.4 mmol/kg/hour (9.6 mmol/kg/day).

<table>
<thead>
<tr>
<th>Infusion Strength</th>
<th>Prescribed amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL/kg/hour = 0.4 mmol/kg/hour</td>
<td>5 mL of sodium chloride 23.4% and make up to 50 mL of water for injection</td>
</tr>
</tbody>
</table>

1 mL/kg of 0.4 mmol/mL of sodium chloride will raise serum sodium by 0.8 mmol/L.

Evidence

IV correction for severe and/or symptomatic hyponatraemia

The body of evidence to base recommendations in this clinical setting is extremely limited, particularly in neonatal populations. Recommendations are based on expert opinion, which have been extrapolated from adult consensus guidelines and take into account specific neonatal safety concerns (see Safety below). In acute hyponatraemia, where the risk of sequelae is greater than that of osmotic demyelination, the correction should be rapid.

Aim to increase serum sodium by 1–2 mmol/L per hour until symptoms abate or a safe level of serum sodium is achieved (≥ 120 mmol/L). Once the safe level is achieved, suggested subsequent goals are 6–8 mmol/L in 24 hours, 12–14 mmol/L in 48 hours and 14–16 mmol/L in 72 hours (LOE IV, GOR C).

Dosage and infusion rate recommendations in this formulary are extrapolated from the rate of rise expected with sodium chloride 3% and are as follows:

- 0.5 mmol/mL of sodium chloride (i.e. sodium chloride 3%), when administered at 1 mL/kg, will raise serum sodium by 1 mmol/L.
- 0.4 mmol/mL of sodium chloride (i.e. diluted sodium chloride in this formulary), when administered at 1 mL/kg, will raise serum sodium by 0.8 mmol/L.

Sodium deficit calculation

Deficit in mmol = (desired sodium – serum sodium) x total body water

Total body water is traditionally calculated as weight x 0.6 in children. Greater total body water content in newborns should be considered and therefore should be calculated as weight x 0.75 (LOE IV, GOR C)

Oral supplementation

A randomised, controlled trial of 4 mmol/kg/d (0.4 mL/kg per dose of 2.5 mmol/mL sodium chloride) of sodium versus placebo from DOL 7 to 35 in infants born 24–31 weeks (53 infants) showed higher serum sodium levels and increased weight gain in the intervention group. A randomised, controlled trial of 4 mmol/kg/d (concentration not specified) of sodium versus placebo from DOL 4 to 14 in infants born at
29–34 weeks (20 infants) showed higher serum sodium levels and increased weight gain in the intervention group. There are also three case-control studies that report similar findings with respect to serum sodium levels and growth in preterm infants supplemented with oral sodium. A systematic review comparing higher versus lower sodium intake for preterm infants is in progress. These findings support the use of oral sodium supplements to correct hyponatraemia and potentially improve growth. (LOE II, GOR B)

Safety

An historical, case-control study identified 42/350 ELBW NICU admissions with an episode of hyponatraemia (Na <125 mmol/L [range 113-124]) that lasted >6 hours (median 1.5 days). Rates of abnormal head ultrasound (IVH or PVL) and abnormal neurological examination were higher in the hyponatremic group (p<0.03; p<0.001 respectively). Correction ≥ 0.5 mmol/L/h showed a trend toward higher rates of abnormal neurological examination. In paediatric and adult populations, multiple cohort studies and reviews have concluded that in patients with chronic hyponatraemia (≥ 48 hours), neurologic sequelae due to osmotic demyelination are associated with more rapid rates of correction.

In summary, rapid correction of hyponatraemia may be detrimental to neurological outcome during myelination of the newborn brain. In adult populations, osmotic demyelination syndrome can usually be avoided by limiting correction of chronic hyponatraemia to < 10 to 12 mmol/L in 24 hours and to < 18 mmol/L in 48 hours. These estimates should be regarded as approximate limits and not goals of therapy. (LOE IV, GOR C)

Osmolarity and Osmolar load

A retrospective, matched-cohort study of 352 children ≤ 18 years evaluated the incidence of phlebitis or infiltration associated with peripheral administration of parenteral nutrition with an osmolarity > 1000 mOsm/L vs ≤ 1000 mOsm/L. There were 151 neonates in the study. There were no differences between patients who did or did not develop adverse events in terms of age or weight. Administration of PPN with osmolarity > 1000 mOsm/L vs ≤ 1000 mOsm/L significantly increased infiltration (17% vs 7%; odds ratio [OR, 2.47]; 95% confidence interval [CI], 1.24–4.94; p = 0.01) and the combined composite end point of phlebitis or infiltration (45% vs 34%; OR, 1.65; 95% CI, 1.07–2.54; p = 0.02). In multivariate analysis, osmolarity > 1000 mOsm/L vs ≤ 1000 mOsm/L was an independent risk factor for developing complications (OR, 1.67; 95% CI, 1.08–2.52; p = 0.02). (LOE III, GOR C)

A prospective, observational study in adults suggests that osmolar load (i.e. number of milliosmoles per hour, calculated as osmolarity x infusion rate) is a better predictor than osmolarity alone for phlebitis. They found an osmolarity rate of 84–99 mOsm/hour was associated with 4–27% rate of phlebitis. They did not report on other injuries such as extravasation. The infusion rates suggested in our formulary have low osmolar load and are considered to carry minimal risk of phlebitis (Consensus opinion).

Practice points

<table>
<thead>
<tr>
<th>VERSION/NUMBER</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original 1.0</td>
<td>06/09/2017</td>
</tr>
<tr>
<td>Version 2.0</td>
<td>15/12/2020</td>
</tr>
<tr>
<td>Version 3.0</td>
<td>18/02/2021</td>
</tr>
<tr>
<td>Current 4.0</td>
<td>1/09/2022</td>
</tr>
<tr>
<td>REVIEW</td>
<td>1/09/2027</td>
</tr>
</tbody>
</table>

Authors Contribution

<table>
<thead>
<tr>
<th>Original author/s</th>
<th>Chris Wake, Srinivas Bolisetty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence Review</td>
<td>Timothy Schindler</td>
</tr>
<tr>
<td>Expert review</td>
<td></td>
</tr>
<tr>
<td>Nursing Review</td>
<td>Eszter Jozsa, Kirsty Minter</td>
</tr>
<tr>
<td>Pharmacy Review</td>
<td>Ushma Trivedi, Jessica Mehegan</td>
</tr>
<tr>
<td>ANMF Group contributors</td>
<td>Ansar Kunjunju, Nilkant Phad, Bhavesh Mehta, John Sinn, Carmen Burman, Michelle Jenkins, Helen Huynh, Wendy Huynh, Thao Tran, Simarjit Kaur, Renae Gengaroli, Stephanie Halena, Karl Kizur, Rebecca O’Grady, Rebecca Barzegar</td>
</tr>
<tr>
<td>Final editing and review of the original</td>
<td>Ian Whyte</td>
</tr>
<tr>
<td>Electronic version</td>
<td>Cindy Chen, Ian Callander</td>
</tr>
<tr>
<td>Facilitator</td>
<td>Srinivas Bolisetty</td>
</tr>
</tbody>
</table>