Alert
Hypertension may recur after cessation. Neonatal abstinence syndrome may recur after cessation. Evidence is insufficient to assess the efficacy and safety of clonidine for sedation and analgesia in term and preterm newborn infants receiving mechanical ventilation.

Indication
- Sedation
- Hypertension
- Neonatal abstinence syndrome

Action
Clonidine is an α2-agonist used to produce reduction in blood pressure and sedation. Compared with dexmedetomidine, clonidine has a lower selectivity for α2-receptors (α1:α2 ratio of 1:1620 for dexmedetomidine versus 1:220 for clonidine). As central α2 effects are sedative, clonidine is less sedating than dexmedetomidine. [1]

Drug type
Sedative, hypnotic. Centrally acting α2-agonist.

Trade name
- Catapres Ampoules
- MZ Clonidine HCl Injection
- APO-Clonidine Tablets
- Catapres 100 Tablets
- Catapres 150 Tablets
- Oral solution or suspension: Compounded by pharmacy in-house (check which strength is stocked with Pharmacy Department).

Presentation
IV preparations: 150 microgram/mL ampoule

Oral preparations: 100 microgram/tablet, 150 microgram/tablet
Solution or suspension: Compounded by pharmacy in-house (check which strength is stocked with Pharmacy Department).

IV clonidine (ampoule) may be given orally either neat or diluted with water prior to administration to give a suitable dose volume.

Dosage/Interval
Sedation:
- IV: Loading dose of 0.5 to 1 microgram/kg over 15 minutes followed by a continuous infusion of 0.2 microgram/kg/hour and titrate up to a maximum of 1 microgram/kg/hour in hemodynamically stable neonates. [2]

- ORAL: 1 microgram/kg/dose 8 hourly and titrate it up to a maximum 2 micrograms/kg/dose 6 hourly. [2, 3] [Group consensus]

Acute severe hypertension:
10 microgram/kg infused over 4 hours. Additional dose of 5 microgram/kg may be given. [4] Consider continuous intra-arterial monitoring.

Chronic hypertension:
Oral: 0.5 to 2.5 microgram/kg/dose 6 to 8 hourly. [5, 6]

Neonatal abstinence syndrome:
Initial therapy: 5 microgram/kg/day divided in 6 to 8 doses (oral recommended).
Increase dose by 25% every 24 hours to a maximum 12 microgram/kg/day according to neonatal abstinence syndrome scores. [7]

Weaning/ceasing clonidine:
If a neonate has received regular clonidine for >5 days, the dose should be weaned by about 50% each day for 2 to 3 days (reflecting an average half-life of 17 hours in neonates) before ceasing the drug. Watch for tachycardia, hypertension, sweating, agitation, but remember these may also be opioid withdrawal symptoms.
Intravenous clonidine can be converted to oral/nasogastric route when requirements are less than 0.75 microgram/kg/hour. The same daily dose is divided into 3 doses for 8 hourly administration (i.e. 4 to 6 microgram/kg orally every 8 hours). [Group consensus]

Dose adjustments
- Therapeutic hypothermia: no information.
- ECMO: no information.
- Renal: commence on a low dose in infants with renal impairment and adjust according to response.
- Hepatic: not applicable.

Maximum dose
- Neonatal abstinence syndrome: 12 microgram/kg/day. [7]
- Hypertension: 25 microgram/kg/day has been reported. However, it is recommended to use in combination with other antihypertensive agents rather than at higher dose as a single agent. [2]

Total cumulative dose

<table>
<thead>
<tr>
<th>Route</th>
<th>IV</th>
<th>Oral</th>
</tr>
</thead>
</table>

Preparation

IV:
- **Step 1:**
 Draw up 1 mL (150 micrograms) of Clonidine and add to 4 mL of Normal Saline 0.9% to make a final volume of 5 mL with a concentration of 150 microgram/5mL or 30microgram/mL.

- **Step 2:**
 From the above solution draw up 1.66 mL/kg (50 microgram/kg) and further dilute with sodium chloride 0.9% to make a final volume of 50 mL with a concentration of 1 mL/hour = 1 microgram/kg/hour.

Oral:
- Tablet: Disperse 100 microgram tablet in 20 mL sterile water. Tablet will disperse within 2 minutes. Shake or stir until an even dispersion is formed and then measure the required dose immediately.
- IV clonidine (ampoule) may be given orally as either neat or diluted with water prior to administration to give a suitable dose volume.
- Solution or suspension: Compounded by pharmacy in-house (check which strength is stocked with Pharmacy Department).

Administration

IV infusion.
- Use a dedicated infusion line to avoid boluses.

Monitoring

- Neonatal abstinence syndrome: monitor Neonatal Abstinence Syndrome scores, cardiorespiratory observations and intermittent blood pressure.
- Sedation of infants on mechanical ventilation: continuous electrocardiogram (ECG) and/or oxygen saturation and continuous or intermittent blood pressure, pain and comfort scores.
- Hypertension: For initial treatment, continuous ECG and/or oxygen saturation, and continuous or intermittent blood pressure monitoring.

Contraindications

- Hypersensitivity to the drug.
- Heart block or severe ventricular dysfunction.

Precautions

- Rebound hypertension may occur after cessation.
- Rebound neonatal abstinence syndrome may occur after cessation.
- May need to reduce dose in infants with renal impairment.

Drug interactions

- Clonidine will enhance the effects of anaesthetics, sedatives, hypnotics and opioids.
- Clonidine will interact with other hypertensives; NSAIDs; α2-adrenergic blockers eg phentolamine; β-blockers; digitalis glycosides; tricyclic antidepressants; and α-blocking neuroleptics.

Adverse reactions

- Hypotension, bradycardia, rebound hypertension, somnolence and xerostomia. [5]

Compatibility

- Fluids: Sodium chloride 0.9%.
- Y-site: aminophylline, dobutamine, dopamine, epinephrine, fentanyl, heparin, ketamine, labetalol, lignocaine, lorazepam, magnesium sulphate, methadone, morphine HCl, glyceryl trinitrate, norepinephrine, potassium chloride.

Incompatibility

- Y-site: midazolam, verapamil

Stability

- Tablet dispersed in water: make a fresh solution for each dose and use immediately.
Storage

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampoule:</td>
<td>Store below 25°C. Protect from light.</td>
</tr>
<tr>
<td>Tablet:</td>
<td>Store below 25°C.</td>
</tr>
<tr>
<td>Check with Pharmacy Department for compounded oral suspension or solution.</td>
<td></td>
</tr>
</tbody>
</table>

Excipients

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampoule:</td>
<td>Sodium chloride, hydrochloric acid and water for injections.</td>
</tr>
<tr>
<td>Catapres Tablet:</td>
<td>Maize starch, lactose monohydrate, calcium hydrogen phosphate, colloidal anhydrous silica, povidone and stearic acid.</td>
</tr>
<tr>
<td>APO-Clonidine Tablet:</td>
<td>Allura Red AC, hypromellose, microcrystalline cellulose, magnesium stearate, maize starch, lactose monohydrate, calcium hydrogen phosphate, colloidal anhydrous silica.</td>
</tr>
<tr>
<td>Check with Pharmacy Department for compounded oral suspension or solution.</td>
<td></td>
</tr>
</tbody>
</table>

Special comments

Evidence

Clonidine is an α2-agonist used to produce reductions in blood pressure and sedation that has been used for treatment of hypertension, sedation of ventilated infants and perioperative sedation.

Compared with dexmedetomidine, clonidine has a lower selectivity for α2-receptors (α1 : α2 ratio of 1 : 1620 for dexmedetomidine versus 1 : 220 for clonidine). As central α2 effects are sedative, clonidine is less sedating than dexmedetomidine. [1]

Efficacy

Neonates receiving mechanical ventilation

A single RCT [2] enrolling 112 term newborn infants on mechanical ventilation on fentanyl and midazolam administered clonidine 1 µg/kg/hour or placebo on day 4 after intubation. No differences in mortality [RR 0.69, 95% CI 0.12 to 3.98], duration of mechanical ventilation (7.1 days versus 5.8 days, P = 0.07) or duration of stay in the intensive care unit were reported. Sedation scale values (COMFORT) and analgesia scores (Hartwig) during the first 72 hours of infusion were lower in the clonidine than the placebo group. Clonidine 1 µg/kg/hour in ventilated newborns reduced fentanyl and midazolam demand with deeper levels of analgesia and sedation without substantial side effects. This was not demonstrated in older infants, possibly due to lower clonidine serum levels. Evidence is insufficient to show the efficacy and safety of clonidine for sedation and analgesia in term and preterm newborn infants receiving mechanical ventilation. [8] [LOE II GOR D]

There are no trials comparing clonidine versus dexmedetomidine in paediatric patients. A systematic review of dexmedetomidine use in paediatric patients found dexmedetomidine was associated with similar sedation scores to midazolam, a reduction in opioid use with use of a higher dose dexmedetomidine 0.5 µg/kg/hour but not 0.25 µg/kg/hour infusion, and reduced duration of mechanical ventilation compared to paediatric patients treated with midazolam and fentanyl. [9]

Perioperative sedation

There are no trials in neonates of clonidine as an adjunct to perioperative care. A systematic review in paediatric patients almost all over 1 year of age, found clonidine premedication 4 µg/kg may reduce postoperative pain in children. Side effects were minimal, but some of the studies used atropine prophylactically with the intention of preventing bradycardia and hypotension. [LOE I GOR C children] Infants enrolled in the trials were ≥1 year age. [10, 11]

Neonatal abstinence syndrome (NAS)

Network meta-analysis of pharmacological treatments for NAS included buprenorphine, clonidine, diluted tincture of opium and clonidine, diluted tincture of opium, morphine, methadone, and phenobarbital. In network meta-analysis, clonidine had non-significant change in length of treatment (mean difference versus morphine −10.52 days [−24.05 to 2.92]), median rank 2 [6 to 1] and length of stay (days: mean difference versus morphine, −6.09 [−12.93 to 0.79], median rank 2 [7 to 1]. Rate of treatment failure was not reported. [12]

Three RCTs of clonidine in infants with NAS have used differing strategies. [7, 13, 14] Bada et al [7] in infants ≥35 weeks’ gestation with NAS compared morphine 0.4 mg/kg/day versus clonidine 5 µg/kg/day divided into 8 doses as initial treatment of NAS. A 25% dose escalation every 24 hours was possible per protocol (maximum of 1 mg/kg per day for morphine and 12 µg/kg per day for clonidine). After control of symptoms, the dose was tapered by 10% every other day. Infants treated with clonidine (n = 16) versus morphine (n = 15) had decreased duration of treatment (median 39 days versus 28 days; P = .02), improved NNNS scores and lower height of arousal and excitability (P < .05). One-year motor, cognitive, and language scores did not differ between groups. Surran et al [14] in 64...
infants compared morphine 0.32 to 0.8 mg/kg/day divided 3 hourly and clonidine 6 to 12 µg/kg/day divided 6 hourly according to NAS Score versus morphine sulfate 0.32 to 0.8 mg/kg/day divided 3 hourly and phenobarbital 6 to 12 mg/kg/day divided 8 hourly. Clonidine dose was weaned by halving daily dose every 24 hours for 2 steps then ceasing. Phenobarbital reduced duration of treatment 4.6 days, (95% CI: 0.3, 8.9; P=0.03). Two clonidine treated infants failed NMS-weaning attempts and were switched to phenobarbital whereas there were no failures occurred in the phenobarbital group. However, 3 (8.8%) infants in the phenobarbital group, manifested over sedation signs (poor feeds and mild respiratory depression) and serum phenobarbital measures were supratherapeutic (>40 mg/dL) and required dosage adjustment. There were no arrhythmias or abnormal BPs observed (hypotension or hypertension) in the clonidine group, no inpatient mortality and no infant was re-admitted to the hospital within 1 week post discharge. Agthe et al [13], in 80 infants with NAS treated with oral diluted tincture of opium, compared oral clonidine 1 µg/kg every 4 hours versus placebo. Median length of therapy was reduced in the clonidine group (11 versus 15 days), although 7 infants in the clonidine group required restarting opium after initial discontinuation. Clonidine reduced opioid use and rate of treatment failures (0% versus 12.5%). Hypertension, hypotension, bradycardia, or desaturations did not occur in either group. Three infants in the clonidine group died as a result of myocarditis, sudden infant death syndrome, and homicide, all after hospital discharge and before 6 months of age.

Conclusion: The optimal regimen to manage symptomatic NAS is unclear due to the low quality, small size and short-term outcomes considered in the published studies. [15]

Hypertension
For chronic hypertension, expert opinion suggested that drug therapy should be initiated mainly because sustained BP elevation may have renal, cardiac, and central nervous system effects [5, 16]. The ESCAPE Trial [17] of 385 children 3 to 18 years with chronic kidney disease (GFR 15-80 ml/minute/1.73 m²), hypertension was treated with ramipril 6 mg/ m²/day and patients were randomly assigned to intensified blood-pressure control (target 24-hour mean arterial pressure below the 50th percentile) or conventional blood-pressure control (mean arterial pressure 50-95th percentile) achieved by the addition of antihypertensive therapy that does not target the renin–angiotensin system. Intensified blood-pressure control, with target 24-hour blood-pressure levels in the low range of normal, confers a substantial benefit with respect to renal function among children with chronic kidney disease. [LOE II GOR B]

There are few case reports of clonidine use for neonatal hypertension [4, 18, 19]. One study of 11 infants and children with severe arterial hypertension associated with renal failure reported a single dose of clonidine 10 µg/kg infused over 4 hours, or an additional dose of 5 µg/kg resulted in a satisfactory response in 9 patients. [4]

Doses of clonidine for treatment of chronic hypertension in neonates [5] and paediatric patients [6] in expert reviews vary from 2–10 µg/kg/day in 3 or 4 divided doses, maximal 25 µg/kg/day.

Safety
Clonidine may cause hypotension, bradycardia, rebound hypertension, somnolence and xerostomia. [5]

Pharmacokinetics
Clonidine displays age-related changes in pharmacokinetics attributable to the maturation of clearance during infancy. [20] It has a long elimination half-life (16.9 hours in neonates, 11.4 hours in infants and 7.4 hours in children). [2, 21] Long half-lives necessitate the use of loading doses in order to reach therapeutic concentrations within a reasonable time. Without a loading dose, steady state would only have been achieved toward the end of the 72-hour study period for neonates. [21] Bioavailability of orally administered clonidine formulations has been estimated to be approximately 55% in children. [3] A target plasma concentration of above 2 µg/L has been proposed. [2] Clonidine titrated infusions with a loading dose of 2 µg/kg followed by a continuous infusion of up to 2 µg/kg/hour are recommended in hemodynamically stable PICU patients to achieve adequate sedation. Clonidine titrated infusions with a loading dose of 1 µg/kg followed by a continuous infusion of up to 1 µg/kg/hour are recommended in hemodynamically stable neonates. [2]

Practice points
Neonatal abstinence syndrome: The optimal regimen to manage symptomatic NAS is unclear. [15] In infants with NAS secondary to opioid withdrawal, clonidine 5 microgram/kg/day up to a maximum 12
microgram/kg/day in 6-8 divided doses may reduce need for morphine treatment and duration of treatment. [7] [LOE II, GOR C]

Sedation: Evidence is insufficient to show the efficacy and safety of clonidine for sedation and analgesia in term and preterm newborn infants receiving mechanical ventilation. [8] [LOE II GOR D]

Chronic hypertension: Recommend to use at lower doses (2–10 µg/kg/day) in 3 or 4 divided doses) in combination with other antihypertensive agents rather than at higher dose as a single agent.

References

