Alert
Data in neonates are limited. Use in neonates should be restricted and considered experimental. Further studies are needed.

Indication
Persistent Pulmonary Hypertension of the Neonate (PPHN):
- refractory to inhaled nitric oxide (iNO) and other conventional therapies or
- those who are persistently unable to be weaned off inhaled nitric oxide or
- in situations where inhaled nitric oxide and high frequency ventilation are not available
Chronic pulmonary hypertension secondary to respiratory, cardiac or chest wall disease.

Action
Selective phosphodiesterase type 5 (PDE5) inhibitor. PDE5 is found in the smooth muscle of the pulmonary vasculature, where it is responsible for the degradation of cyclic guanosine monophosphate (cGMP). cGMP produces smooth muscle relaxation. Sildenafil increases cGMP within pulmonary vascular smooth muscle cells resulting in relaxation. In patients with pulmonary hypertension, this can lead to selective vasodilatation of the pulmonary vascular bed and, to a lesser degree, vasodilatation in the systemic circulation.

Drug Type
Phosphodiesterase type 5 (PDE5) inhibitor.

Trade Name
IV: Revatio
Oral: Pharmacy prepared

Presentation
IV: Vial for injection containing 10 mg/12.5 mL = 0.8 mg/mL of sildenafil
Oral: Pharmacy-prepared oral suspension

Dosage/Interval
IV:
- **Loading:** 0.4 mg/kg administered over THREE hours followed by:
- **Maintenance:** 1.6 mg/kg/day (0.067 mg/kg/hour) as a continuous infusion for up to 7 days.

- **PO:**
 - Start at 0.5 to 1 mg/kg/dose given 6 to 8 hourly and titrate up to 2 mg/kg/dose according to response.
 - May increase up to maximum of 3 mg/kg/dose given 6 hourly.
 - To avoid the possible occurrence of sudden clinical deterioration during withdrawal of sildenafil, a gradual dose reduction should be considered when stopping sildenafil.

Route
IV, oral

Preparation/Dilution
See below

Administration
IV infusion:
- **Low concentration IV infusion (weight > 2.5 kg)**
 - Draw up 2.5mL/kg (2 mg/kg of sildenafil) solution and make up to 15 mL using glucose 5% (preferred) or sodium chloride 0.9%.
 - Infuse 1 mL/h for 3 hours (loading dose of 0.4 mg/kg) followed by 0.5 mL/h (0.067 mg/kg/h)

- **High concentration IV Infusion (weight ≤ 2.5 kg)**
 - Draw up 4.2mL/kg (3.36 mg/kg of sildenafil) solution and make up to 15 mL using glucose 5% (preferred) or sodium chloride 0.9%.
 - Infuse 0.6 mL/h for 3 hours (loading dose of 0.4 mg/kg) followed by 0.3 mL/h (0.067 mg/kg/h)

Oral:
- Shake well before drawing up the dose. Give via intragastric tube, preferably with feed to minimise risk of gastrointestinal irritation. If baby is not on enteral feeds or breast milk is not available, give dose via intragastric tube and flush with 0.5 mL water for injection.

Monitoring
Heart rate, blood pressure and oxygenation.
Renal and hepatic function.
Consider monitoring with echocardiogram.
Sildenafil
Newborn Use Only

<table>
<thead>
<tr>
<th>Evidence summary</th>
<th>2017</th>
</tr>
</thead>
</table>

Contraindications
- Hypersensitivity to sildenafil
- Not to be used in patients taking organic nitrates of any form e.g. glyceryl trinitrate,isosorbide mononitrate, sodium nitroprusside

Precautions
- Use with caution in neonates with sepsis or uncontrolled hypotension.
- Sildenafil clearance (in adults) is reduced in hepatic and severe renal impairment.

Drug Interactions
Sildenafil metabolism is principally mediated by the cytochrome P450 (CYP) isoforms 3A4 (major route) and 2C9 (minor route). Inhibitors of these isoenzymes may reduce sildenafil clearance and inducers of these isoenzymes may increase sildenafil clearance. Thus, erythromycin and fluconazole may increase concentrations of sildenafil by reducing hepatic clearance and rifampicin may decrease concentrations by inducing its hepatic metabolism.
- Avoid concomitant use of sildenafil with: Alprostadil (prostaglandin E1), other antihypertensives and vasodilators, as they may have their effects potentiated by sildenafil.

Adverse Reactions
- Most concerning short-term adverse effects: Worsening oxygenation and systemic hypotension. Epistaxis, respiratory symptoms (cough and nasal congestion), diarrhoea and vomiting, gastrooesophageal reflux and abdominal pain, headaches, tremors, erections, facial flushing, dizziness, irritability and (rarely) fever, skin disorders, pain in limbs and oedema have been reported in children on sildenafil. The Sildenafil in Treatment-Naive Children, Aged 1-17 Years, With Pulmonary Arterial Hypertension long-term extension (STARTS-2) trial showed worse survival in children receiving high doses of sildenafil as monotherapy. A recent study conducted by Roldan and colleagues, found there was a statistically significant increase in adverse drug reaction (ADR) frequency in children receiving higher-than-recommended doses. However, it was not associated with a lower survival rate. Sildenafil has the potential to adversely affect vision. Impaired liver function tests. May increase the risk of severe retinopathy of prematurity if used in extremely preterm neonates.

Compatibility
- Glucose 5%, sodium chloride 0.9%.

Incompatibility
- No data – where possible administer via dedicated line.

Stability
- IV – infusion should be changed every 24 hours.
- Oral suspension – as per pharmacy advice.

Storage
- IV – unopened vials at room temperature (20–25°C).
- Oral suspension – refrigerate, do not freeze

Special Comments
- In paediatric patients with pulmonary arterial hypertension, an increased mortality risk was associated with long-term (> 2 year) use. The mortality risk of long-term use in neonates is unknown.

Neonates with pulmonary hypertension
Shah et al performed a systematic review on sildenafil compared with placebo or other pulmonary vasodilators, irrespective of dose, route and duration of administration, in neonates with PPHN. Three eligible trials that enrolled 77 infants were identified. The methodological quality of the studies indicated low-moderate risk of bias. All studies were performed in resource-limited settings where iNO and high frequency ventilation were not available at the time of study. There was a significant reduction in mortality in the sildenafil group (typical RR 0.20, 95% CI 0.07 to 0.57; typical RD -0.38, 95% CI -0.60 to -0.16; Number needed to treat to benefit 3, 95% CI 2 to 6). Physiological parameters of oxygenation (oxygenation index, PaO₂) suggested a steady improvement after the first dose of sildenafil. No clinically important side effects were identified. Sildenafil in the treatment of PPHN has significant potential especially in resource limited settings (LOE I, GOR B).

The European Paediatric Pulmonary Vascular Disease Network’s consensus statement 2016: Oral sildenafil should be considered for treatment of PPHN and PH in BPD, especially if iNO is not available (LOE Ila GOR B). Intravenous sildenafil may be considered for treatment of PH, including PPHN, in critically ill patients, especially in those with an unsatisfactory response to iNO (LOE IIb GOR B).

Paediatric pulmonary hypertension

Newborn Use Only

This RHW document is a modification of Neomed version. Dosage schedules remain the same. However, information on the commercial preparations not used at RHW might have been deleted. The risk rating might have been modified as per the local health district policy.
Sildenafil
Newborn Use Only

| STARTS-1 trial performed by Barst et al,1 studied the effectiveness of oral sildenafil in children with pulmonary arterial hypertension. 238 children with a weight ≥ 8 kg were randomised to low-, medium-, or high-dose sildenafil or placebo orally 3 times daily for 16 weeks. The primary comparison was percent change from baseline in peak oxygen consumption for the 3 sildenafil doses combined versus placebo. Percent change in PV’O₂ for the 3 sildenafil doses combined was only marginally significant; however, PV’O₂, functional class and haemodynamic improvements with medium and high doses suggest efficacy with these doses.

STARTS-2 was the extension of the STARTS-1 trial.2 In STARTS-2, sildenafil-treated patients continued STARTS-1 dosing; placebo-treated patients were randomised to 1 of the 3 sildenafil dose groups. Patients requiring additional pulmonary arterial hypertension–specific therapy discontinued study treatment; survival follow-up was attempted. Hazard ratios for mortality were 3.95 (95% confidence interval, 1.46–10.65) for high versus low and 1.92 (95% confidence interval, 0.65–5.65) for medium versus low dose; however, multiple analyses raised uncertainty about the survival/dose relationship. In summary, although children randomised to higher compared with lower sildenafil doses had an unexplained increased mortality, all sildenafil dose groups displayed favourable survival for children with pulmonary arterial hypertension. Combined with STARTS-1 data, the overall profile favoured the medium dose.

Preterm infants at risk of BPD
Konig et al6 performed an RCT in preterm infants, < 28 weeks gestational age, if they were mechanically ventilated on day 7 of life. Infants were randomised to a 4-week course of either oral sildenafil (3 mg/kg/day) or placebo solution. Twenty infants were randomised, 10 received sildenafil and 10 received placebo. Sildenafil did not reduce length of invasive (median 688 versus 227 h) or non-invasive ventilation (median 1609 versus 1416 h). More infants in the sildenafil group required postnatal steroid treatment. One infant developed hypotension following sildenafil administration and was excluded after three doses. Conclusion: Sildenafil as an early treatment for preterm infants at risk of BPD is not beneficial.

Prevention of rebound pulmonary HTN after weaning iNO
Namachivayam et al5 performed an RCT in 30 ventilated infants and children from varying respiratory conditions including BPD (average age 0.4 y) and receiving 10 ppm iNO. They were randomised to either 0.4 mg/kg as a single oral dose of sildenafil or placebo 1 h before discontinuing iNO. Rebound occurred in 10/14 of the placebo group and 0 out of 15 in the sildenafil group. Four placebo patients couldn’t be weaned off iNO, whereas all in the sildenafil group were successfully weaned (p = 0.042). A single oral dose of sildenafil may be considered for this particular scenario (LOE II, GOR C).

Pre-op oral sildenafil for children with CHD prior to cardiopulmonary bypass
Vassalos et al,12 in a randomised trial, compared the effects of oral sildenafil (0.5 mg/kg) and placebo, administered the day before cardiac surgery, in 24 children. Postoperatively, mean pulmonary vascular resistance and oxygenation index remained unchanged, whilst oxygen delivery and biventricular systolic function were significantly reduced in the sildenafil group. In this trial, pre-operative sildenafil did not affect postoperative pulmonary vascular resistance. There was, however, a negative impact on ventricular function and oxygenation. Therefore, sildenafil is not recommended for this particular indication.

Post-op sildenafil in infants after cardiac surgery
Stocker et al11 performed an RCT in 16 ventilated infants early after closure of ventricular or atrioventricular septal defects. They were randomly assigned to one of two groups. Seven infants received iNO (20 ppm) first, with the addition of intravenous sildenafil (0.35 mg/kg over 20 min) after 20 min. Eight infants received sildenafil first, iNO was added after 20 min. Intravenous sildenafil augmented the pulmonary vasodilator effects of iNO in infants early after cardiac surgery. However, sildenafil produced systemic hypotension and impaired oxygenation, which was

| Table 1: Preventing rebound pulmonary hypertension after weaning iNO in infants (n = 30) |
|---|------------------|------------------|
| *Sildenafil* (3 mg/kg) | Placebo | |
| Rebound incidence | 10/14 | 0/15 | |
| Significant statistical difference | Yes | No | |
| Conclusion | Sildenafil not recommended | |

Note: This RHW document is a modification of Neomed version. Dosage schedules remain the same. However, information on the commercial preparations not used at RHW might have been deleted. The risk rating might have been modified as per the local health district policy.
not improved by iNO. Sildenafil is not recommended for this particular indication.

The European Paediatric Pulmonary Vascular Disease Network Consensus 2016: Beneficial haemodynamic effects of sildenafil have also been demonstrated in failing Fontan circulations. Sildenafil improved max. oxygen consumption (VO₂ max.) and pulmonary blood flow in patients with Fontan circulation. Another randomised, crossover study showed that sildenafil therapy improved exercise tolerance and ventilatory efficiency in Fontan patients.

Pharmacokinetics
Steinhorn et al performed a multicentre, open-label, dose-escalation, pilot, pharmacokinetics study of 36 near-term and term neonates with echo-confirmed idiopathic PHN or secondary PHN with MAS, RDS, sepsis or pneumonia and OI ≥ 15. The study included 8 sequential “step-up” dosing groups. Most infants received a loading dose of sildenafil to bring the plasma concentration of sildenafil to a target, followed by a maintenance infusion for the remainder of the study. The duration of IV sildenafil was for at least 48 hours and up to 7 days. They found sildenafil to be well tolerated, particularly with a dosing regimen comprising a loading dose of 0.4 mg/kg delivered over 3 hours, followed by a maintenance infusion at 1.6 mg/kg/day.

Sildenafil and retinopathy of prematurity
Sildenafil is 10 times more selective for PDE5 as compared to PDE6. PDE6 is found in the retina. If used in extremely preterm neonates, sildenafil may increase the risk of severe retinopathy of prematurity. A retrospective, case-controlled study (n = 68) in neonates born before 30 weeks gestation showed sildenafil use did not increase the risk of retinopathy of prematurity.³

References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
Dec;155(6):841-847.e1.