Alert

Indication

Drug Type

Trade Name

Presentation

Route

Dosage/Interval

Preparation/Dilution

Action

Newborn Ose Only			
High risk of hypoglycaemia.			
Insulin binds to the plastic of giving sets. Flush th	e plastic tubing with 20 mL of prepared insulin		
solution into a receptacle prior to connecting to t	solution into a receptacle prior to connecting to the infant. This is to saturate the binding.		
Insulin concentrations \leq 0.05 Unit/mL are not rel	iably delivered even after preconditioning and		
flushing.			
Treatment of persistent hyperglycaemia.			
[For treatment of hyperkalaemia, see Insulin – hy	/perkalaemia].		
Insulin is a polypeptide hormone that acts on o	cells throughout the body to stimulate uptake,		
utilisation and storage of glucose resulting in a le	owering of blood glucose. Insulin stimulates the		
liver to store glucose in the form of glycogen and	I facilitates the entry of glucose into muscle and		
adipose tissue. It inhibits lipolysis, proteolysis ar	nd gluconeogenesis, enhances protein synthesis		
and conversion of excess glucose into fat.			
Polypeptide hormone – lowers blood glucose.			
Actrapid [Novo Nordisk]			
Humulin R [Eli Lilly]			
Hypurin Neutral Injection [Aspen]			
Vial: 100 units/mL in a 10 mL vial and 3 mL Pen-fi	II.		
Treatment of hyperglycaemia:			
Intravenous:			
Starting dose: 0.05 unit/kg/hour.			
Dose range: 0.01 to 0.1 unit/kg/hour.			
Titrate in small increments to blood glucose: Targ	set blood glucose 8 to 10 mmol/L [1, 2].		
IV			
SINGLE STRENGTH INFUSION (suitable if we	ight > 1 kg)		
Infusion strength	Prescribed amount		
1 mL/hour = 0.1 unit/kg/hour	5 unit/kg insulin and make up to 50 mL		
Draw up 0.6 mL (60 units of insulin) and add 29.4	mL glucose 5%, glucose 10% or sodium		
chloride 0.9% to make a final volume of 30 mL w	ith a concentration of 2 unit/mL.		
FURTHER DILUTE: 2.5 mL/kg (5 units/kg) of the a	bove solution and dilute with glucose 5%,		
glucose 10% or sodium chloride 0.9% to a final vo	olume of 50 mL with a concentration of 0.1		
unit/kg in each mL			

Infusion at 1 mL/h = 0.1 unit/kg/hour

	DOUBLE STRENGTH INFUSION		
	Infusion strength	Prescribed amount	
	1 mL/hour = 0.2 unit/kg/hour	10 unit/kg insulin and make up to 50 mL	
	Draw up 0.6 mL (60 units of insulin) and add 29.4 mL glucose 5%, glucose 10% or sodium		
	chloride 0.9% to make a final volume of 30 mL with a concentration of 2 unit/mL.		
	FURTHER DILUTE : 5 mL/kg (10 unit/kg) of the above solution and dilute with glucose 5%, glucose 10% or sodium chloride 0.9% to a final volume of 50 mL with a concentration of 0.2 unit/kg in each mL.		
	Infusion at 1mL/h = 0.2 unit/kg/hour		
Administration	Intravenous: Insulin binds to the plastic of giving sets. Flush the plastic tubing with 20 mL of prepared insulin solution into a receptacle prior to connecting to the infant. This is to saturate		
	the binding.		
	Do not filter infusion. Insulin also binds to the filter.		
	Can be infused with maintenance fluids. Recomm	end attaching insulin infusion after the filter.	
	Do not bolus other drugs through this line.		
Monitoring	Blood glucose concentration		
	Initiation: Every 30 minutes until stabilise	ed.	
	Stabilisation: 4–6 hourly		
	After cessation of infusion: At 30 minute	s and at 1 hour	

Neonatal Medicines Formulary Consensus Group Insulin for hyperglycemia Page1 of 4 This is a printed copy. Refer to the electronic Neomed system for the most up to date version.

Insulin – Hyperglycaemia

Newborn Use Only

	Alteration of infusion: Within 1 hour
	Serum potassium concentration.
Contraindications	Hypersensitivity to regular insulin or any of its components.
	During episodes of hypoglycaemia.
Precautions	Hypoglycaemia is a common adverse effect. Blood glucose must be monitored closely to detect
	hypoglycaemia.
	Do not adjust the rate of the maintenance solution or other infusions when insulin is
	commenced or the insulin infusion rate is altered. For example, if insulin is commenced or the
	rate of the insulin infusion is increased, do not turn down the maintenance solution to
	compensate for the total volume delivered. The amount of glucose being delivered to the infant
	will then be reduced as the insulin is commenced or dose is increased, possibly causing
	hypoglycaemia in an already unstable infant.
	If ceasing insulin or changing the strength, be careful to remove and replace the previous line
	and T-piece to avoid flushing through insulin remaining in the tubing.
	Administer IV bolus medication via separate IV access to avoid insulin bolus administration.
Drug Interactions	The following may reduce insulin requirements: Octreotide, beta-adrenergic blocking agents,
	angiotensin converting enzyme inhibitors, salicylates, anabolic steroids, alpha-adrenergic
	blocking agents, quinine, quinidine and sulfonamides.
	The following may increase insulin requirements: Thiazides, furosemide, ethacrynic acid,
	glucocorticoids, thyroid hormones, sympathomimetics, growth hormone, diazoxide.
Adverse Reactions	Hypoglycaemia; hypokalaemia; and hyponatraemia.
	Urticaria and anaphylaxis (extremely rare)
	Insulin resistance may develop resulting in a larger dose requirement.
Compatibility	Fluids: Amino acid solution, glucose 5%, glucose 10%, glucose 50%, lipid emulsion, sodium
	chloride 0.9%.
	Y-site administration: Amiodarone, azathioprine sodium; aztreonam; bretylium tosylate;
	bumetanide; buprenorphine hydrochloride; calcium chloride dihydrate; calcium gluconate
	monohydrate; caspofungin acetate;; cefazolin sodium; cefepime hydrochloride; cefotaxime;
	ceftazidime; ceftizoxime; ceftriaxone sodium; cefuroxime; chloramphenicol sodium succinate;
	clindamycin phosphate; cyanocobalamin; dexamethasone sodium phosphate;; enalaprilat;
	epirubicin hydrochloride; epoetin alfa; erythromycin lactobionate; fentanyl citrate; fluconazole;
	folic acid (as sodium salt); foscarnet sodium; fosphenytoin sodium; ganciclovir sodium;
	hydrocortisone sodium succinate; ibuprofen lysine; imipenem-cilastatin sodium; indometacin
	sodium trihydrate; lactated ringer's injection; lidocaine hydrochloride; magnesium sulfate;
	mannitol; meropenem; methadone hydrochloride; methylprednisolone sodium succinate;
	metoclopramide hydrochloride; metoprolol tartrate; metronidazole; milrinone lactate; naloxone
	hydrochloride; nitroglycerin; nitroprusside sodium; octreotide acetate; pancuronium bromide;
	penicillin g potassium; penicillin g sodium; phenobarbital sodium; phytonadione; piperacillin
	sodium; potassium acetate; potassium chloride; procainamide hydrochloride; promethazine
	nydrochioride; proporol; pyridoxine hydrochioride; remitentanii hydrochioride; sodium
	bicarbonate; streptokinase; surentanii citrate; tacronimus; terbutaine surate; thiamine
	nydrochioride; ticarcinin disodium; ticarcinin disodium-ciavulanate potassium; urokinase;
	In curinge: Inculin NDH
Incompatibility	V-site administration: Cefovitin: chlornromazine: diazenam: diazovide: donamine:
meompationity	alvconvrronium bromide (alvconvrrolate); isonrenaline; ketamine; labetalol; noradrenaline
	(noreninenbrine): nhentolamine: nhenvlenbrine: nhenvtoin: nineracillin sodium-tazobactam
	sodium: polymyxin: propranolol: protamine: quinidine: rocuronium: sulfamethoxazole-
	trimethoprim:
Stability	Actrapid: Prepared solutions are stable at room temperature (< 25°C) for 24 hours
	Humulin R: Prepared infusions can be stored refrigerated for 48 hours and may be used at room
	temperature for an additional 48 hours.
	Novolin R: Prepared solutions are stable for 24 hours at room temperature [Micromedex].

Insulin – Hyperglycaemia

2017

Storage	Store human insulin preparations between 2 and 8°C. The shelf life is 30 months when stored	
	between 2 and 8°C. Do not freeze. Human insulin preparations which have been frozen must not	
	be used. Protect from excessive heat and light. Should appear clear and colourless. After first	
	use, the vials may be kept at room temperature (below 25°C) for 4 weeks.	
Special Comments	Insulin is incompatible with many drugs and hence should be administered via a single,	
	dedicated line.	
	Insulin is adsorbed to the plastic of intravenous bags, syringes, and tubing which reduces the	
	delivery of insulin [3-5].	
	Twenty mL of insulin priming solution at concentrations of 0.1 Unit/mL and 0.05 Unit/mL were	
	found to deliver 80% and 26.5% of the expected insulin. Insulin concentrations \leq 0.05 Unit/mL	
	are not reliably delivered even after preconditioning and flushing [3,4].	
Evidence summary	Efficacy	
	Treatment of hyperglycaemia in very low birth weight infants : Systematic review [2] of trials of	
	insulin infusion for treatment of neonatal hyperglycaemia found that use of an insulin infusion	
	obviates the need to decrease the concentration of glucose prescribed and optimised the	
	utilisation of calories by the infant resulting in significant increases in non-protein energy intake,	
	glucose intake and short-term weight gain. However, insulin infusion had no significant effect on	
	death, severe intraventricular naemorrnage, retinopathy of prematurity, bacterial sepsis, fungal	
	sepsis or necrotising enterocolitis; effects on other major morbialities were not assessed. These	
	trials did not report an excess of hypoglycaemia, possibly due to the more liberal target BSLS:	
	from randomized trials in hyperglycaemic VI BW neonates is insufficient to determine the effects	
	of treatment on death or major morbidities [2] [LOE LCOP D]	
	Browentien of neonatal hyperglycaemia in very low hirth weight infante: Systematic review [8]	
	of trials of early insulin infusion for provention of neonatal hyperglycaemia found that use of an	
	insulin infusion reduced hyperglycaemia but increased death before 28 days and increased the	
	risk of hypoglycaemia. The reduction in hyperglycaemia was not accompanied by significant	
	effects on major morbidities: effects on neurodevelopment are awaited. The evidence does not	
	support the routine use of insulin infusions to prevent hyperglycaemia in VI BW neonates [8]	
	(I OF L GOR B)	
	Tight glycaemic control with insulin in hyperglycaemic very low birth weight infants: RCT in	
	infants born at < 30 weeks' gestation or < 1500 g with hyperglycaemia (2 consecutive BGL > 8.5	
	mmol/L 4 hours apart) randomly assigned to tight glycaemic control with insulin (target BGL 4–6	
	mmol/L) or restrictive guidelines for starting insulin (target BGL 8–10 mmol/L). Infants in the	
	tight group had a lesser lower leg growth rate ($P < 0.05$), but greater head circumference growth	
	(P < 0.0005) and greater weight gain $(P < 0.001)$ to 36 weeks' postmenstrual age than control	
	infants. Tight group infants had lower daily BGL and greater incidence of hypoglycaemia (BGL <	
	2.6 mmol/L) (25/43 vs 12/45; P < 0.01) than controls. There were no significant differences in	
	nutritional intake or in the incidences of mortality or morbidity. The balance of risks and benefits	
	of insulin treatment in hyperglycaemic pre-term neonates remains uncertain. (LOE II GOR D) [1].	
	Guidelines: ESPGHAN 2005 recommended the use of insulin should be restricted to conditions	
	where reasonable changes in glucose infusion rate do not control marked hyperglycaemia [9].	
	Although this recommendation is now out of date, current evidence is consistent with this	
	recommendation.	
	Pharmacokinetics	
	Following IV administration, the observed half-life of insulin ranges from 5 to 15 minutes	
	[Micromedex].	
References	1. Alsweiler JM, Harding JE, Bloomfield FH. Tight glycemic control with insulin in hyperglycemic	
	preterm babies: a randomized controlled trial. Pediatrics. 2012;129:639-47.	
	2. Bottino M, Cowett RM, Sinclair JC. Interventions for treatment of neonatal hyperglycemia in	
	very low birth weight infants. Cochrane Database Syst Rev. 2011:CD007453.	
	3. Hewson IVI, Nawadra V, Uliver J, Odgers C, Plummer J, Simmer K. Insulin infusions in the	
	neonatal unit: delivery variation due to adsorption. J Paediatr Child Health. 2000;36:216-20.	
	4. Thompson CD, Vital-Carona J, Faustino EV. The effect of tubing dwell time on insulin	

adsorption during intravenous insulin infusions. Diabetes Technol Ther. 2012;14:912-6.
5. Simeon PS, Geffner ME, Levin SR, Lindsey AM. Continuous insulin infusions in neonates:
pharmacologic availability of insulin in intravenous solutions. Journal of Pediatrics.
1994;124:818-20.
6. Collins JW, Jr., Hoppe M, Brown K, Edidin DV, Padbury J, Ogata ES. A controlled trial of insulin
infusion and parenteral nutrition in extremely low birth weight infants with glucose intolerance.
J Pediatr. 1991;118:921-7.
7. Meetze W, Bowsher R, Compton J, Moorehead H. Hyperglycemia in extremely- low-birth-
weight infants. Biol Neonate. 1998;74:214-21.
8. Sinclair JC, Bottino M, Cowett RM. Interventions for prevention of neonatal hyperglycemia in
very low birth weight infants. Cochrane Database Syst Rev. 2011:CD007615.
9. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. 1. Guidelines on Paediatric Parenteral
Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition
(ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN). Supported
by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr. 2005:41
Suppl 2:S1-87.
10 Micromedex accessed 24/03/2017

Original version Date: 3/05/2017	Author: Neonatal Medicines Formulary Consensus Group
Current Version number: 1.2	Current Version Date: 20/06/2017
Risk Rating: Medium	Due for Review: 20/06/2020
Approval by: As per Local policy	Approval Date: